对陶瓷的添加剂制造的实施比其他材料类别更具挑战性,因为大多数塑形方法都需要聚合物粘合剂。激光添加剂制造(LAM)可以提供一条新的无粘合剂合并路线,因为它能够直接处理陶瓷而无需后处理。然而,陶瓷的激光加工,尤其是高性能氧化陶瓷,受到低热冲击性,弱致密性和低光吸收的限制;特别是在可见或近红外范围内。目前缺乏高性能氧化陶瓷的LAM(粉末床融合 - 激光束和定向能量沉积)的广泛审查。此最新的评论对氧化陶瓷领域的过程技术,部分属性,开放挑战和过程监测进行了详细的摘要和批判性分析。提高了准确性和机械强度的提高,可以将氧化陶瓷的含量开放到新领域。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:本文使用代表性样品研究了位于西班牙安达卢西亚西部的原始高岭土矿床。表征方法包括 X 射线衍射 (XRD)、X 射线荧光 (XRF)、筛分和沉降粒度分析以及热分析。确定了陶瓷性能。在一些测定中,我们使用了来自 Burela(西班牙卢戈)的商用高岭土样品,用于陶瓷工业,以便进行比较。高岭土矿床是由富含长石的岩石蚀变形成的。这种原始高岭土被用作当地陶瓷和耐火材料制造的添加剂。然而,之前没有关于其特性和烧成性能的研究。因此,本研究的意义在于对这一主题进行科学研究并评估其应用可能性。用水冲洗原始高岭土,以增加所得材料的高岭石含量,从而对岩石进行富集。结果表明,XRD 测定原料中的高岭石含量为 20 wt%,其中粒径小于 63 µ m 的颗粒占 ~23 wt%。粒径小于 63 µ m 部分的高岭石含量为 50 wt %。因此,通过湿法分离可以提高该原料高岭土的高岭石含量。但该高岭土被视为废高岭土,XRD 鉴定为微斜长石、白云母和石英。通过热膨胀法 (TD)、差热分析 (DTA) 和热重法 (TG) 进行热分析,可以观察到高岭石的热分解、石英相变和烧结效应。将该原料高岭土的压制样品、水洗获得的粒径小于 63 µ m 的部分以及用锤磨机研磨的原料高岭土在 1000-1500 ◦ C 范围内的几个温度下烧制 2 小时。测定并比较了所有这些样品的陶瓷性能。结果表明,这些样品在烧结过程中呈现渐进的线性收缩,小于 63 µ m 的部分的最大值约为 9%。总体而言,烧成样品的吸水率从 1050 ◦ C 时的约 18-20% 下降到 1300 ◦ C 烧成后的几乎为零,随后实验值有所上升。在 1350 ◦ C 烧成 2 小时后,开孔气孔率几乎为零,并且在研磨的生高岭土样品中观察到的体积密度达到最大值 2.40 g/cm 3。对烧成样品的 XRD 检查表明,它们由高岭石热分解产生的莫来石和原始样品中的石英组成,除玻璃相外,它们还是主要晶相。在 1300–1350 ◦C 下烧结 2 小时,可获得完全致密或玻璃化的材料。在本研究的第二步中,研究了之前研究的有希望的应用,即通过向该高岭土样品中加入氧化铝(α-氧化铝)来增加莫来石的含量。混合物的烧结,在湿法加工条件下,用这种高岭土和 α-氧化铝制备的莫来石,通过在高于 1500 ◦ C 的温度下反应烧结 2 小时,使莫来石的相对比例增加。因此,可以使用这种高岭土制备莫来石耐火材料。这种高铝耐火材料的加工有利于预先进行尺寸分离,从而增加高岭石含量,或者更好地对原料高岭土进行研磨处理。
Ambikapur-497001,印度Chhattisgarh,4 M.Sc.-Student,化学系,Pt。Ravishankar Shukla大学,Raipur,Chhattisgarh摘要:这项研究研究了掺杂的钛酸钡(Batio 3)陶瓷的结构,介电和光学性质,突显了它们用于高级电子应用的潜力。钛酸钡是一种突出的铁电材料,以系统的方式与各种元素一起掺杂,以改善其功能属性。通过X射线衍射(XRD)的方式描述了晶体结构和相位发展,展示了掺杂如何影响晶格参数和相位稳定性。介电特征,例如损失切线和介电常数,揭示了掺杂剂对介电行为和铁电特性的影响。光学研究,包括UV-VIS光谱法检查了带隙和光透射率,这对于光电子用途至关重要。发现,靶向掺杂可以有效地改变钛酸钡陶瓷的结构,介电和光学特性,使其非常适合电容器,传感器和其他电子设备。这项研究为优化钛酸钡陶瓷提供了宝贵的见解,以在各种技术应用中实现卓越的性能。也已经观察到某些掺杂剂减少了带隙的能量,从而导致更好的光学透明度和可调折射率,这对于光电应用非常有价值。关键字:钛盐(Batio 3),掺杂陶瓷,介电特性,光学特性,1。引言钛酸钡(Batio 3)钙钛矿结构的陶瓷,由于其出色的介电,铁电和压电性特性,一直是电子应用中的基础材料[1]。这些独特的特征使Batio 3在各种电子设备中必不可少,包括多层陶瓷电容器(MLCC),热敏电阻,执行器和传感器[4]。该材料的高介电常数和可调节的铁电特性对电容器特别有益,在该电容器中,有效的能量存储至关重要[10]。但是,随着电子技术的发展,越来越多的需求以进一步增强和优化Batio 3的内在特性,以满足
摘要Al 2 O 3 /Al 6 Ti 2 O 13具有低热膨胀性能的复合陶瓷有望通过定向能量沉积物激光器(DED-LB)技术快速制备大规模和复杂组件。但是,由于对过程条件的理解不足,DED-LB技术的更广泛应用受到限制。Al 2 O 3 /Al 6 Ti 2 O 13(6 mol%TIO 2)复合陶瓷的质量,微观结构和机械性能作为能量输入的函数在广泛的过程窗口中被系统地研究。在此基础上,揭示了固化缺陷和微观结构的演化过程的形成机理,并确定了优化的过程参数。结果表明,高能量输入提高了熔融池的流动性,并促进了组成相的均匀分布和完整的生长,从而促进消除凝固缺陷,例如孔隙和条间隙。此外,微结构的大小在很大程度上取决于能量输入,当能量输入增加时增加。此外,由于固化条件的变化,α -AL 2 O 3相的形态随着能量输入的增加而逐渐从细胞转变为细胞树突。在凝固缺陷和微观结构大小的全面影响下,Al 2 O 3 /Al 6 Ti 2 O 13复合陶瓷的裂缝韧性和弯曲强度随着能量输入的增加而呈现抛物线法行为。在0.36 - 0.54 W ∗ min 2 g - 1 mm -1的能量输入范围内实现最佳的形状质量和出色的机械性能。在此过程窗口中,Al 2 O 3 /Al 6 Ti 2 O的平均微度,断裂韧性和弯曲强度分别高达1640 HV,3.87 MPa M 1/2和227 MPa。这项研究提供了确定熔体生长Al 2 O 3 /Al 6 Ti 2 O 13复合陶瓷的DED-LB的过程参数的实用指导。
摘要:纳米晶氧化铝-氧化锆基共晶陶瓷是用高能束制备的,由超细、三维缠结的单晶域组成,是一类特殊的共晶氧化物,具有极高的高温力学性能,如强度和韧性以及抗蠕变性。本文旨在全面综述氧化铝-氧化锆基共晶陶瓷的基本原理、先进的凝固工艺、微观结构和力学性能,特别关注纳米晶尺度上的技术现状。首先根据先前报道的模型介绍了耦合共晶生长的一些基本原理,然后简要介绍了凝固技术和从工艺变量控制凝固行为的策略。然后,从不同层次尺度阐明纳米共晶结构的微观结构形成,并详细讨论硬度、弯曲和拉伸强度、断裂韧性和耐磨性等机械性能,以进行比较研究。利用高能束工艺已经生产出具有独特微观结构和成分特征的纳米氧化铝-氧化锆基共晶陶瓷,在许多情况下,与传统共晶陶瓷相比,机械性能有显著改善。
2024年4月15日,星期一,07:00 - 08:00自助早餐会议1 - UHTCS,UHTCMC和HE陶瓷的基本属性 - I 08:00 - 08:10简介,传播,传播,传播,08:10 - 08:35 University of Science and Technology, USA 08:35 – 08:55 Melting temperature and mechanical properties of tantalum carbonitrides Ta2CxNy Jérémie Manaud, European Commission / Joint Research Centre, Germany 08:55 – 09:15 In-situ high temperature characterization of the cBN to hBN transformation using the conical nozzle levitator Isabel Crystal, LLNL, USA 09:15 – 09:35双相高凝结硼碳酸盐超高温度陶瓷的发射和熔融温度 10:00 – 10:30 Coffee Break Session 2 – Processing, synthesis of new compounds and novel methods, and scale-up issues - I 10:30 – 10:55 Invited Synthesis of Ultrahigh Temperature materials using UHS and USP Ji-Cheng Zhao, University of Maryland, USA 10:55 – 11:15 Preceramic polymer grafted nanoparticles as a route to Ultra-High Temperature Ceramics Matthew Dickerson, US美国空军研究实验室,美国,11:15 - 11:35,基于Zrb2的材料的BinderJet添加剂Peter Kaczmarek,NSWC Carderock,美国11:35 - 12:00邀请二进制至Quarary Truntition Metal Diborides diborides Roberto roberto roberto roberto rorru',Cagliari University,Cagliari,Italiali necaliali nekalie noursialie noursial noursity noursity of Cagliari noursialiali necaliali necaliali necaliali
摘要:由于其特征,包括10-15 pc/n的D 33和高稳定性,直至1000℃以上的温度,因此,含有壁炉晶体的极性玻璃 - 螺旋孔被认为是在高温下需要压电的应用的高效材料。在本文中,我们研究了Sr-Fresnoite(STS)玻璃训练的钡取代。研究了两个方面:首先,取代对结晶的优先方向的影响,其次,玻璃 - 凝聚力在高温下产生和传播表面声波(SAW)的能力。XRD分析表明,BA的替换为10 at。替代,使我们能够保持壁画晶体(00L)平面的强烈优先取向,低于表面以下1 mm以上。较高的替代水平(25和50 at。%)诱导与表面机制竞争的非方向的体积结晶机制。锯设备是用0、10和25 at。%ba取代的玻璃室底物制造的。温度测试揭示了所有这些设备的频率和延迟的高稳定性。玻璃 - 驾驶次数为10%Ba取代的玻璃训练性给出了锯信号的最强振幅。这归因于高(00L)优先方向以及缺失的体积结晶。
摘要 共烧结低温陶瓷的增材制造 (AM) 为制造新型 3D 射频 (RF) 和微波通信组件、嵌入式电子设备和传感器提供了独特的途径。本文介绍了有史以来首次直接 3D 打印低温共烧结陶瓷/浮动电极 3D 结构。基于浆料的 AM 和选择性激光烧蚀 (SLB) 用于制造带有银 (Ag) 内部浮动电极的块状电介质 Bi 2 Mo 2 O 9 (BMO,烧结温度 = 620 – 650°C,ε r = 38)。开发了一种可打印的 BMO 浆料,并优化了 SLB,以改善边缘定义并烧掉粘合剂而不会损坏陶瓷。SLB 增加了保持形状所需的生坯强度,生产出无裂纹的零件,并防止共烧结过程中银渗入陶瓷。烧结后,将生坯部件放入传统炉中烧结,温度为 645°C,烧结时间为 4 小时,密度达到 94.5%,抗压强度达到 4097 MPa,相对介电常数 (εr) 为 33.8,损耗角正切 (tanδ) 为 0.0004 (8 GHz)(BMO)。由此证明了使用 SLB 后进行打印后烧结步骤来创建 BMO/Ag 3D 结构的可行性。
npl.co.uk › DMM88 PDF 作者:ILPZT Ceramics · 1993 — 作者:ILPZT Ceramics · 1993 材料计量学部主任 ... 传统计量技术无法胜任。... 往往会拖延人工智能。