量子密码术 [1] 是最古老的量子技术之一,已成为应对量子计算机挑战的杰出候选技术 [2]。尤其是量子密钥分发 (QKD),其发展速度非常快,其最终目标是使远距离用户能够共享一个密钥,该密钥必须无法被窃听者获知,从而提供高度安全的加密。QKD 系统面临的关键挑战包括通信系统中的信道损耗和噪声水平。这是影响 QKD 性能及其实现的两个主要障碍,尤其是在长距离传输中 [3]。直到最近,光纤一直是研究和实验大多数 QKD 协议的主要平台。但它们的长距离安全距离有限,主要是因为光纤链路的透射率呈指数衰减。一般来说,有两种解决方案可以克服这一限制:使用量子中继器[4-10]或使用自由空间和卫星链路[11-17]。当前基于地面光纤的量子通信系统的覆盖范围仅限于几百公里[18],而我们似乎即将建立全球量子通信网络,即量子互联网[19,20]。因此,最近的研究引起了人们对星载 QKD 和空间量子通信的浓厚兴趣[17],旨在了解自由空间、高空平台站(HAPS)系统和卫星链路如何帮助突破当前的距离限制,同时保证实现量子安全。人们已经取得了重要进展,特别是在单向空间量子通信的极限和安全性方面[21-23],结果表明,秘密比特可以在湍流大气中安全地分发,无论是弱湍流还是强湍流[24]。在 QKD 科学的另一个不同分支中,独立于测量设备 (MDI) 的 QKD [25,26](相关实验另见参考文献 [27-29])是放宽典型点对点 QKD 协议中的信任假设的最有趣和研究最充分的方案之一。更准确地说,在 MDI 中,人们不需要假设将在他们之间分发密钥的合法方的检测设备是可信的。这是因为据称不受信任的第三方
摘要 - 本文考虑了通用古典量子(CQ)通道的极地代码的设计和解码。通过使用量子消息(BPQM)来解码,尤其是配对测量BPQM(PM-BPQM)解码的想法。由于PM-BPQM解码器接受经典的密度演化(DE)分析,因此可以使用DE来设计任何CQ通道的极性代码,然后有效地计算代码速率和错误概率之间的权衡。我们还针对极地代码实施了PM-BPQM解码器的经典模拟。虽然可以在量子计算机上有效地实现解码器,但在古典计算机上模拟解码器实际上具有指数复杂性。因此,解码器的仿真结果受到限制,主要是为了验证我们的理论结果。
受量子噪声影响的通用量子比特幺正算子被复制并插入到相干叠加通道中,叠加了两个路径,这些路径提供给穿过噪声幺正的探测量子比特,并由控制量子比特驱动。对叠加通道在探测-控制量子比特对的联合状态上实现的变换进行表征。然后针对噪声幺正相位估计的基本计量任务对叠加通道进行专门分析,其性能由经典或量子 Fisher 信息评估。与传统估计技术以及最近为类似相位估计任务研究的具有不确定因果顺序的量子切换通道进行了比较。在此处的分析中,第一个重要的观察结果是,叠加通道的控制量子比特虽然从未直接与被估计的幺正相互作用,但仍然可以单独测量以进行有效估计,同时丢弃与幺正相互作用的探测量子比特。切换通道也存在此属性,但无法通过传统技术实现。这里在一般条件下描述了控制量子比特的最佳测量。第二个重要的观察结果是噪声在将控制量子比特耦合到幺正量子比特中起着至关重要的作用,并且控制量子比特在非常强的噪声下仍可用于相位估计,即使在完全去极化的噪声下也是如此,而常规估计和切换通道在这些条件下不起作用。结果扩展了相干控制通道能力的分析,这些通道代表了可用于量子信号和信息处理的新设备。
胃食管癌,包括在食道和胃中发生的肿瘤,通常的预后较差,并且缺乏有效的化学治疗药物治疗。储存量失调的钙进入(SOCE)之间的关联,关键的细胞内Ca 2+信号通路和胃食管癌正在出现。本综述总结了了解SOCE介导的细胞内Ca 2+信号对胃食管癌的贡献的最新进展。它评估了每个成分在SOCE机械中的病理生理作用,例如ORAIS和STIM在癌细胞增殖,迁移和侵袭以及保持干性的维持中的病理生理作用。最后,它讨论了为开发更多特定和有效的SOCE抑制剂开发的努力,这可能是一组新的化学治疗药物出现在地平线上,以提供有针对性的治疗或辅助治疗,以克服对胃食管癌的耐药性。
摘要。安全的双方计算考虑双方计算其私有输入的联合函数而不透露计算输出以外的任何内容的问题。在这项工作中,我们迈出了理解以下情况的第一步:1)双方(Alice 和 Bob)只能通过经典信道进行通信,2)Bob 的输入是量子的,3)Alice 的输入是经典的。我们的第一个结果表明,在这种情况下,在恶意量子对手的情况下,通常不可能通过黑盒模拟实现双方量子功能。特别是,我们表明,仅依赖经典信道的安全量子计算协议的存在将与量子不可克隆论证相矛盾。我们通过三种不同的方法规避了这种不可能性。第一种方法是考虑一种较弱的安全概念,称为单边模拟安全。这个概念以标准的基于模拟的意义保护一方(量子 Bob)的输入,并保护另一方输入(经典 Alice)的隐私。我们展示了如何实现一个依赖于有错学习假设的满足这一概念的协议。第二种规避不可能结果的方法是假设量子输入具有有效的经典表示,同时提供基于标准模拟的安全性以抵御恶意 Bob。最后,我们将注意力集中在零知识函数类上,并提供一个编译器,该编译器以 QMA 关系 R 的经典量子知识证明 (PoQK) 协议作为输入(经典 PoQK 是可以由经典验证者验证的 PoQK),并输出可以由经典方验证的 R 的零知识 PoQK。我们的结果直接意味着 Mahadev 的量子计算经典验证协议 (FOCS'18) 可以转变为具有经典验证者的量子知识零知识证明。据我们所知,我们是第一个实例化这种原语的人。
其中 F θ 是量子 Fisher 信息,ρ n AB 是 n 次迭代后的最终状态,见图 1。为了解决这个问题,我们借用了量子通信领域中强大的隐形传态工具 [4]:如果信道 E θ 具有适当的对称性,它对任何输入 ρ 的作用都可以通过局部操作和经典通信 (LOCC) 模拟,见图 2。这样,量子信道对一般输入的作用自然地被纳入自适应估计协议中,使我们能够推导出量子 Fisher 信息的上限,从而推导出参数 θ 估计的最终精度。对于在隐形传态协议 [5] 中涉及的幺正变换作用下协变的信道,这种模拟是可能的:例如去极化和擦除信道,以及玻色子系统中的高斯信道。与上限一起,我们找到了一个匹配的下限,从而获得了最终的非常简单的表达式
平坦的膜无处不在地变成自然界和人造世界中神秘的复杂形状。在复杂性背后,已连续发现清晰的确定性变形模式是基本应用规则,但仍未实现。在这里,我们破译了薄膜的两种元素变形模式,随着通过缩小的通道的流动滚动和折叠。我们验证这两种模式将厚度范围从微米到原子量表的宽度范围的膜变形。它们的出现和确定性折叠数与föppl -vonKármán数量和收缩比定量相关。揭露的确定性变形模式可以指导二维纸的可折叠设计器微型机器人和精致的结构,并提供了生物形态遗传决定论之外的另一种机械原理。
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于2024年7月11日。; https://doi.org/10.1101/2024.07.07.08.602502 doi:Biorxiv Preprint
几乎同时与晶体管的发明同时出现了所有现代电子的概念,即信息理论的概念,这是过渡到数字表示原理和数据处理的基础。在1948年发表了一项关于C. shennon的历史研究,并在对非线性交流理论的T. van Hoven原理的研究中进行了一段时间。作为量子熵逻辑的独立学科理论是在1990年代形成的,但是它是在1970年代创建的。随着终端辐射源和非线性通信的出现,由物理数据载体的性质施加的接收和传输数据的基本局限性的问题已经上升。信息技术的现代发展允许在可预见的将来,这些限制将成为进一步推断现有信息处理原则的主要障碍。对这些基本局限性的系统研究导致了统计决策的非线性量子理论的创造(即2000年量子信号的最佳检测和评估。1980年代90年代的量子计算概念的外观(R. Feinman,U.I。Manin,P。Shor)和终端辐射的新通信协议(S. Nesterov等)允许不仅谈论限制,而是关于专门量子资源的应用的新可能性
由量子噪声造成的一般量子统一操作员被复制并插入一个相干超级式通道中,超过两个路径在嘈杂的单位上跨越探测器,并由控制量子驱动。对探针控制量子对的关节状态上的超塑通道进行的转换实现进行了表征。然后对超座通道进行特定分析,以分析嘈杂单一的相位估计的基本计量学任务,并由Fisher信息,经典或Quanth评估。与常规估计技术进行了比较,并通过最近研究了具有无限因果关系的量子切换通道,该通道最近研究了相似的相位估计任务。在此处的分析中,第一个重要的观察结果是,尽管它从未直接与估计的单一估计的单一相互作用,但可以单独测量它以进行有效的估计,同时丢弃与单一相互作用的探针Qubit。此属性也带有开关通道,但不可访问的技术无法访问。在一般条件下,此处表征了控制量子标筒的最佳测量。第二个重要的观察结果是,噪声在将控制矩偶联到单位的耦合中起着至关重要的作用,并且即使使用完全去极化的噪声,控制量矩形在非常强的噪声下仍可以进行相位估计的操作,而常规估计和切换通道在这些条件下也不正常。结果扩展了对相干控制通道的能力的分析,该通道代表可利用量子信号和信息处理的新设备。