摘要。这项研究深入研究了用于用于胸部CT扫描的潜在扩散模型的合成肺结节的表征。我们的实验涉及通过二进制掩码进行定位和各种结节属性引导扩散过程。特别是,掩码指示结节在边界框的形状中的近似位置,而其他标量属性则在嵌入向量中编码。扩散模型在2D中运行,在推理过程中产生单个合成CT切片。该体系结构包括一个VQ-VAE编码器,以在图像和潜在空间之间进行转换,以及负责DeNoising过程的U-NET。我们的主要目标是评估合成图像的质量,这是条件属性的函数。我们讨论可能的偏见以及模型是否充分定位并表征合成结节。我们对拟议方法的能力和局限性的发现可能是涉及有限数据集的下游任务,因为医学成像通常是这种情况。
AI 优先肺癌 (N=4408) 转诊队列 (N=107065) 肺癌百分比 转诊队列百分比 患病率 (PR) (95% CI) 所有 CXR P1 1761 17691 39.95 16.52 2.42 (2.33–2.51) P2 2071 36686 46.98 34.27 1.37 (1.33-1.42) P3 250 10853 5.67 10.14 0.56 (0.49-0.63) P4 326 41835 7.40 39.07 0.19 (0.17-0.21) 全科医生转诊 CXR P1 766 2695 47.88 11.96 4.0 (3.76-4.26) P2 633 4576 39.56 20.30 1.95 (1.82-2.08) P3 76 2423 4.75 10.75 0.44 (0.25-0.55) P4 125 12847 7.81 56.99 0.14 (0.12-0.16) 急诊科转诊 CXR P1 617 4479 36.70 17.07 2.15 (2.01-2.30) P2 822 9194 48.90 35.04 1.39 (1.32-1.47) P3 122 2997 7.26 11.42 0.63 (0.53-0.76) P4 120 9570 7.14 36.47 0.20 (0.16-0.23)
表 1:Thopaz 胸管拔除气流阈值 ...................................................................................... 12 表 2.患者特征 ...................................................................................................................... 26 表 3.主要结果 ...................................................................................................................... 27 表 4.数字系统的设置和调整 ............................................................................................. 38 表 5.常见警报和故障排除 ............................................................................................. 40
摘要 — 目标:我们提出了一种轻薄、柔软、可贴合胸部的双模传感器,即胸部电子纹身,它结合了先进的信号处理框架,可准确识别各种心脏事件,从而即使在身体运动期间也能提取心动时间间隔。方法:我们制作了一个无线电子纹身,具有同步心电图 (ECG) 和心震图 (SCG) 功能。SCG 可测量因心跳引起的胸部振动,提供与 ECG 互补的心血管健康信息。然而,运动引起的伪影会影响 SCG 的功效。电子纹身采用轻薄且有弹性的设计,可将其策略性地放置在剑突附近,便于对 ECG 和 SCG 进行高质量监测,从而提高信号质量。九名参与者在步行和骑自行车时接受了测量。我们提出了一个多级信号处理框架,集成了自适应归一化最小均方 (NLMS) 滤波器、集合平均和经验模态分解 (EMD),统称为 FAD 框架,以准确提取心脏时间间隔 (CTI)。结果:关键 CTI,尤其是左心室射血时间 (LVET),被我们的硬件软件系统成功提取,并且即使在大量运动期间也与 FDA 批准的患者监测仪报告的结果高度一致。电子纹身测量的射血前期 (PEP) 也与先前的研究结果一致。结论:双峰胸部电子纹身与 FAD 框架相结合,可在长时间内实现可靠的 CTI 测量
这项研究的目的是证明使用深度学习模型在定量评估临床发现中通常会根据常规方案使用二进制测试结果进行二进制测试结果。胸部X射线是用于检测多种疾病的最常用的诊断工具,通常是定期检查的一部分。然而,当涉及可以限制为正常范围内但不被视为与疾病有关的发现时,医师发现的阈值可能会有所不同,因此有必要定义一种新的评估方法并量化它。这种方法的实施在时间和劳动方面都是困难而昂贵的。在这项研究中,总共使用83,005张胸部X射线图像来诊断胸膜增厚和脊柱侧弯的常见发现。一种新颖的方法,用于评估医生判断图像以使这些发现的可能性的概率。所提出的方法成功地使用了仅在二进制注释数据上训练的深度学习模型,成功地量化了Physicians的发现的变化。还证明,使用卷积神经网络进行一般图像分析以及基于矢量量化变异自动编码器的新知识的深度学习模型,可以将开发的方法应用于转移学习,其高相关性高0.89至0.97。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权所有者此版本于 2020 年 4 月 10 日发布。;https://doi.org/10.1101/2020.04.08.20040907 doi:medRxiv preprint
对于高质量的放射科来说,X 射线成像的持续质量控制 (QC) 至关重要。有效的 QC 工作是一个持续的过程,需要医学物理学家耗费大量时间从多个成像系统收集数据并进行费力的分析。重复和拒绝的 X 射线图像会导致患者受到不必要的辐射暴露并降低放射科的效率,因此延迟拒绝的 X 射线图像是成功的 QC 程序的关键组成部分。我们认为深度学习 (DL) 算法可以最大限度地减少工作量并提高 QC 程序的准确性。在此海报中,我们介绍了对 CXR 图像执行自动 QC 检查的 DL 算法的开发和性能评估。我们重点关注 (1) 使用的采集协议是否与获取的正面 CXR 图像匹配,以及 (2) 正面 CXR 定位是否可以接受?
摘要 目的 旨在评估人工智能 (AI) 的智能工作列表优先级排序是否能够优化放射学工作流程并减少胸部 X 光片 (CXR) 中关键发现的报告周转时间 (RTAT)。此外,我们研究了一种方法以抵消 AI 的假阴性预测的影响——由于 CXR 被排在工作列表的末尾,这会导致 RTAT 非常长且危险。 方法 我们开发了一个模拟框架,通过结合医院特定的 CXR 生成率和报告率以及病理分布来模拟大学医院的当前工作流程。利用这个框架,我们模拟了标准工作列表处理“先进先出”(FIFO),并将其与基于紧急程度的工作列表优先级排序进行了比较。检查优先级排序由 AI 执行,将八种不同的病理发现按紧急程度降序排列:气胸、胸腔积液、浸润、充血、肺不张、心脏扩大、肿块和异物。此外,我们引入了最长等待时间的上限,超过此上限后,将为检查分配最高紧急程度。结果与 FIFO 模拟相比,所有优先级模拟中所有关键发现的平均 RTAT 均显着减少(例如,气胸:35.6 分钟 vs. 80.1 分钟;p < 0.0001),而大多数发现的最大 RTAT 同时增加(例如,气胸:1293 分钟 vs. 890 分钟;p < 0.0001)。我们的“上限”大大降低了所有类别的最大 RTAT(例如,气胸:979 分钟 vs. 1293 分钟/1178 分钟;p < 0.0001)。结论我们的模拟表明,AI 的智能工作列表优先级排序可以降低 CXR 中关键发现的平均 RTAT,同时保持较小的 FIFO 最大 RTAT。要点 • 基于医院经验数据开发逼真的临床工作流程模拟器,可使用人工智能精确评估智能工作列表优先级。 • 使用没有最大等待时间阈值的智能工作列表优先级可能会产生人工智能的假阴性预测风险,从而大大增加报告周转时间。 • 使用最先进的卷积神经网络可以将平均报告周转时间缩短到几乎完美分类算法的上限(例如,气胸:35.6 分钟 vs. 30.4 分钟)。
方法:招募了总共333例肺结核(训练队列中的233例,在验证队列中为100例)。从MRI图像(CE T1W和T2W)中提取了总共2,824个放射线特征。逻辑回归(LR),幼稚的贝叶斯(NB),支持向量机(SVM),随机森林(RF)和极端梯度提升(XGBOOST)分类器用于构建预测模型,并在应用最佳预测模型后为每个患者获得了放射线学分数(RAD分数)。临床因素和RAD分数共同基于多元逻辑回归分析构建了一个nom图模型,并使用接收器操作特征曲线(AUC)下的区域评估了五个预测模型的诊断性能。