1。Bhattacharyya S,Davar J,Dreyfus G,Caplin ME。类癌心脏不适。循环。2007; 116(24):2860-2865。 2。 Mansencal N,Mitry E,Forissier J-F等。 评估类癌性心脏病中卵子的专利范围。 Am Heart j。 2006; 151(5):1129。 3。 Homma S,Sacco RL。 专利孔椭圆形和中风。 循环。 2005; 112(7):1063-1072。 4。 Davison P,Clift PF,Steeds RP。 超声心动图在诊断中的作用,监测卵子孔的闭合和术后评估。 EUR J ECHOCARDIOGR。 2010; 11(10):I27-I34。 5。 Mansencal N,Mitry E,Bachet JB,Rougier P,Dubourg O.经过治疗的类癌综合征患者的超声心脏随访。 AM J Cardiol。 2010; 105(11):1588-1591。 6。 Homma S,MesséSR,Rundek T等。 专利孔卵形。 nat Rev dis Primers。 2016; 2:15086。 7。 Mansencal N,Mitry E,PillièreR等。 专利孔卵形的流行和经皮闭合装置在类癌心脏病中的有用性。 AM J Cardiol。 2008; 101(7):1035-1038。 8。 Trevelyan J,Steeds RP。 经胸膜超声心动膜与谐波成像与跨食管超声心动图的谐波成像的比较,以诊断卵子的专利孔。 Postgrad Med J。 2006; 82(971):613-614。 9。 Hayashi Y,McGaw DJ,Goldstein J. 10。2007; 116(24):2860-2865。2。Mansencal N,Mitry E,Forissier J-F等。评估类癌性心脏病中卵子的专利范围。Am Heart j。 2006; 151(5):1129。 3。 Homma S,Sacco RL。 专利孔椭圆形和中风。 循环。 2005; 112(7):1063-1072。 4。 Davison P,Clift PF,Steeds RP。 超声心动图在诊断中的作用,监测卵子孔的闭合和术后评估。 EUR J ECHOCARDIOGR。 2010; 11(10):I27-I34。 5。 Mansencal N,Mitry E,Bachet JB,Rougier P,Dubourg O.经过治疗的类癌综合征患者的超声心脏随访。 AM J Cardiol。 2010; 105(11):1588-1591。 6。 Homma S,MesséSR,Rundek T等。 专利孔卵形。 nat Rev dis Primers。 2016; 2:15086。 7。 Mansencal N,Mitry E,PillièreR等。 专利孔卵形的流行和经皮闭合装置在类癌心脏病中的有用性。 AM J Cardiol。 2008; 101(7):1035-1038。 8。 Trevelyan J,Steeds RP。 经胸膜超声心动膜与谐波成像与跨食管超声心动图的谐波成像的比较,以诊断卵子的专利孔。 Postgrad Med J。 2006; 82(971):613-614。 9。 Hayashi Y,McGaw DJ,Goldstein J. 10。Am Heart j。2006; 151(5):1129。3。Homma S,Sacco RL。专利孔椭圆形和中风。循环。2005; 112(7):1063-1072。 4。 Davison P,Clift PF,Steeds RP。 超声心动图在诊断中的作用,监测卵子孔的闭合和术后评估。 EUR J ECHOCARDIOGR。 2010; 11(10):I27-I34。 5。 Mansencal N,Mitry E,Bachet JB,Rougier P,Dubourg O.经过治疗的类癌综合征患者的超声心脏随访。 AM J Cardiol。 2010; 105(11):1588-1591。 6。 Homma S,MesséSR,Rundek T等。 专利孔卵形。 nat Rev dis Primers。 2016; 2:15086。 7。 Mansencal N,Mitry E,PillièreR等。 专利孔卵形的流行和经皮闭合装置在类癌心脏病中的有用性。 AM J Cardiol。 2008; 101(7):1035-1038。 8。 Trevelyan J,Steeds RP。 经胸膜超声心动膜与谐波成像与跨食管超声心动图的谐波成像的比较,以诊断卵子的专利孔。 Postgrad Med J。 2006; 82(971):613-614。 9。 Hayashi Y,McGaw DJ,Goldstein J. 10。2005; 112(7):1063-1072。4。Davison P,Clift PF,Steeds RP。超声心动图在诊断中的作用,监测卵子孔的闭合和术后评估。EUR J ECHOCARDIOGR。2010; 11(10):I27-I34。 5。 Mansencal N,Mitry E,Bachet JB,Rougier P,Dubourg O.经过治疗的类癌综合征患者的超声心脏随访。 AM J Cardiol。 2010; 105(11):1588-1591。 6。 Homma S,MesséSR,Rundek T等。 专利孔卵形。 nat Rev dis Primers。 2016; 2:15086。 7。 Mansencal N,Mitry E,PillièreR等。 专利孔卵形的流行和经皮闭合装置在类癌心脏病中的有用性。 AM J Cardiol。 2008; 101(7):1035-1038。 8。 Trevelyan J,Steeds RP。 经胸膜超声心动膜与谐波成像与跨食管超声心动图的谐波成像的比较,以诊断卵子的专利孔。 Postgrad Med J。 2006; 82(971):613-614。 9。 Hayashi Y,McGaw DJ,Goldstein J. 10。2010; 11(10):I27-I34。5。Mansencal N,Mitry E,Bachet JB,Rougier P,Dubourg O.经过治疗的类癌综合征患者的超声心脏随访。AM J Cardiol。 2010; 105(11):1588-1591。 6。 Homma S,MesséSR,Rundek T等。 专利孔卵形。 nat Rev dis Primers。 2016; 2:15086。 7。 Mansencal N,Mitry E,PillièreR等。 专利孔卵形的流行和经皮闭合装置在类癌心脏病中的有用性。 AM J Cardiol。 2008; 101(7):1035-1038。 8。 Trevelyan J,Steeds RP。 经胸膜超声心动膜与谐波成像与跨食管超声心动图的谐波成像的比较,以诊断卵子的专利孔。 Postgrad Med J。 2006; 82(971):613-614。 9。 Hayashi Y,McGaw DJ,Goldstein J. 10。AM J Cardiol。2010; 105(11):1588-1591。 6。 Homma S,MesséSR,Rundek T等。 专利孔卵形。 nat Rev dis Primers。 2016; 2:15086。 7。 Mansencal N,Mitry E,PillièreR等。 专利孔卵形的流行和经皮闭合装置在类癌心脏病中的有用性。 AM J Cardiol。 2008; 101(7):1035-1038。 8。 Trevelyan J,Steeds RP。 经胸膜超声心动膜与谐波成像与跨食管超声心动图的谐波成像的比较,以诊断卵子的专利孔。 Postgrad Med J。 2006; 82(971):613-614。 9。 Hayashi Y,McGaw DJ,Goldstein J. 10。2010; 105(11):1588-1591。6。Homma S,MesséSR,Rundek T等。专利孔卵形。nat Rev dis Primers。2016; 2:15086。 7。 Mansencal N,Mitry E,PillièreR等。 专利孔卵形的流行和经皮闭合装置在类癌心脏病中的有用性。 AM J Cardiol。 2008; 101(7):1035-1038。 8。 Trevelyan J,Steeds RP。 经胸膜超声心动膜与谐波成像与跨食管超声心动图的谐波成像的比较,以诊断卵子的专利孔。 Postgrad Med J。 2006; 82(971):613-614。 9。 Hayashi Y,McGaw DJ,Goldstein J. 10。2016; 2:15086。7。Mansencal N,Mitry E,PillièreR等。专利孔卵形的流行和经皮闭合装置在类癌心脏病中的有用性。AM J Cardiol。 2008; 101(7):1035-1038。 8。 Trevelyan J,Steeds RP。 经胸膜超声心动膜与谐波成像与跨食管超声心动图的谐波成像的比较,以诊断卵子的专利孔。 Postgrad Med J。 2006; 82(971):613-614。 9。 Hayashi Y,McGaw DJ,Goldstein J. 10。AM J Cardiol。2008; 101(7):1035-1038。 8。 Trevelyan J,Steeds RP。 经胸膜超声心动膜与谐波成像与跨食管超声心动图的谐波成像的比较,以诊断卵子的专利孔。 Postgrad Med J。 2006; 82(971):613-614。 9。 Hayashi Y,McGaw DJ,Goldstein J. 10。2008; 101(7):1035-1038。8。Trevelyan J,Steeds RP。经胸膜超声心动膜与谐波成像与跨食管超声心动图的谐波成像的比较,以诊断卵子的专利孔。Postgrad Med J。2006; 82(971):613-614。 9。 Hayashi Y,McGaw DJ,Goldstein J. 10。2006; 82(971):613-614。9。Hayashi Y,McGaw DJ,Goldstein J. 10。Hayashi Y,McGaw DJ,Goldstein J.10。紧急的卵子孔的紧急经导管闭合,然后进行反右侧瓣膜手术,用于代偿性类癌心脏病。心脏肺循环。2008; 17(3):259-261。 Marenco J,Naimi S,Hijazi Z,Patel A,Pandian N.在患有类癌心脏病患者的椭圆形卵子的非外科闭合,并因剖腹产而严重缺氧。 导管心脏间隔。 2000; 51(2):210-213。2008; 17(3):259-261。Marenco J,Naimi S,Hijazi Z,Patel A,Pandian N.在患有类癌心脏病患者的椭圆形卵子的非外科闭合,并因剖腹产而严重缺氧。导管心脏间隔。2000; 51(2):210-213。
1. Kiguchi T、Okubo M、Nishiyama C 等人。全球院外心脏骤停:国际复苏联络委员会(ILCOR)首份报告。复苏。2020;152:39-49。2. Spaulding CM、Joly LM、Rosenberg A 等人。院外心脏骤停幸存者的即时冠状动脉造影。N Engl J Med。1997;336(23):1629-1633。3. Staer-Jensen H、Nakstad ER、Fossum E 等人。复苏后心电图用于选择院外心脏骤停中可立即进行冠状动脉造影的患者。Circ Cardiovasc Interv。 2015;8(10):e002784。4. O'Gara PT、Kushner FG、Ascheim DD 等人。2013 年 ACCF/AHA ST 段抬高型心肌梗死管理指南:执行摘要:美国心脏病学会基金会/美国心脏协会实践指南工作组报告。循环。2013;127(4):529-555。5. Ibanez B、James S、Agewall S 等人。2017 年 ESC ST 段抬高型急性心肌梗死管理指南:欧洲心脏病学会(ESC)ST 段抬高型急性心肌梗死管理工作组。欧洲心脏杂志。 2018;39(2):119 ‐ 177。6. Collet JP、Thiele H、Barbato E 等人。2020 年 ESC 关于无持续 ST 段抬高型患者急性冠状动脉综合征管理的指南。Rev Esp Cardiol(英语版)。2021;74(6):544。7. Gorjup V、Radsel P、Kocjancic ST、Erzen D、Noc M。心肺复苏成功后发生急性 ST 段抬高型心肌梗死。复苏。2007;72(3):379 ‐ 385。8. Lemkes JS、Janssens GN、van der Hoeven NW 等人。无 ST 段抬高型心脏骤停后的冠状动脉造影。N Engl J Med。 2019;380(15):1397 ‐ 1407。9. Kern KB、Radsel P、Jentzer JC 等。无 ST 段抬高型心脏骤停后早期冠状动脉造影与不早期冠状动脉造影的随机试点临床试验:PEARL 研究。循环。2020;142(21):2002 ‐ 2012。10. Pareek N、Kordis P、Webb I、Noc M、MacCarthy P、Byrne J。心导管实验室对院外心脏骤停的现代管理:现状和未来方向。Interv Cardiol Rev。2019;14(3):113 ‐ 123。11. Desch S、Freund A、Akin I 等。无 ST 段抬高型心脏骤停后的血管造影。 N Engl J Med 。2021;385:2544 ‐ 2553。12. Dumas F、Manzo ‐ Silberman S、Fichet J 等。早期心脏肌钙蛋白 I 测量能否帮助预测院外心脏骤停幸存者的近期冠状动脉闭塞?Crit Care Med 。2012;40(6):1777 ‐ 1784。13. Waldo SW、Chang L、Strom JB、O'Brien C、Pomerantsev E、Yeh RW。预测心脏骤停复苏患者中是否存在急性冠状动脉病变。Circ Cardiovasc Interv 。2015;8(10):e002198。14. Pareek N、Kordis P、Beckley ‐ Hoelscher N 等。一种用于早期预测院外心脏骤停后神经系统结果的实用风险评分:MIRACLE2。欧洲心脏杂志。2020;41:4508 ‐ 4517。15. Smith SW、Dodd KW、Henry TD、Dvorak DM、Pearce LA。使用改良的 Sgarbossa 规则中的 ST 段抬高与 S 波比率诊断左束支传导阻滞下的 ST 段抬高型心肌梗死。紧急医学年鉴。2012;60(6):766 ‐ 776。16. Sgarbossa EB、Pinski SL、Gates KB、Wagner GS、GUSTO ‐ I 研究者。心室起搏心律存在下急性心肌梗死的早期心电图诊断。美国心脏杂志。 1996;77(5):423 - 424. 17. McDaniel MC, Galbraith EM, Jeroudi AM, et al. ST 段升高患者冠状动脉罪犯病变的定位
高血压与心力衰竭相关,预先或减少的射血分数。循环₂₀₁₈₂₀₁₈137:₁₇₉₆︲₁₈₁₀)Hunt JM,Bethea B,Liu X等人:正常肺和肺部高血压的肺静脉,左心脏病引起的肺静脉。Am J Physiol肺细胞Mol Physiol₂₀₁₃305:l₇₂₅︲₇₃₆₇₂₅︲₇₃₆)Nguyen QT,Nsaibia MJ,Sirois MG等:PBI︲₄₀₅₀降低了心脏失败的肺部高血压,肺纤维化和右心室功能障碍。心脏 - vasc res₂₀₂₀116:(₁₇₁︲₁₈₂)Guazzi M,Borlaug BA:左心脏病引起的肺动脉高压。循环₂₀₁₂126:₉₇₅︲₉₉₀₉₇₅︲₉₉₀)Guazzi M,Naeije R:心力衰竭中的肺动脉高压:病理生理学,病理生物学和新兴的临床观点。j am coll Cardiol₂₀₁₇69:₁₇₁₈︲₁₇₃₄₁₇₁₈︲₁₇₃₄₈)circ res₂₀₁₉125:₄₄₉︲₄₆₆)马德拉sanz J,Lopez︲lopezJG,Menendez C等人:通过类型的糖尿病类型和大鼠中等缺氧引起的肺血管疾病的不同模式。exp Physiol₂₀₁₂97:(₆₇₆︲₆₈₆₆₇₆︲₆₈₆)Cayir A,Ugan RA,Albayrak A等:肺部内膜系统:一个有效的治疗靶标,具有可用于糖尿病大鼠模型中肺部变化的肺部改善的有效治疗靶标。j内分泌投资₂₀₁₅38:(₉₈₇︲₉₉₈)Clemmer JS,Xiang L,Lu S等人:高糖氧化应激会增加肺血管渗透性。循环₂₀₂₁₂₀₂₁₂₀₂₁;144:₆₁₅︲₆₃₇)微循环₂₀₁₆23:(₂₂₁︲₂₂₉₂₂₁︲₂₂₉)MOBOKATA M,REDDY YNV,PISLARU SV等:证据支持存在具有保留的射血分数的独特心力衰竭表型的证据。循环₂₀₁₇136:(₆︲₁₉₆︲₁₉)Gopal DM,Santhanakrishnan R,Wang YC等:IM型右心室血液动力学表明,元元素综合征患者的临床前肺动脉高压。j am heart socsoc₂₀₁₅4:e₀₀₁₅₉₇)流行病学,右文献功能和生存。am j呼吸危机护理医学192:(₁₂₃₄︲₁₂₄₆)(Guazzi M,uses a ef a:effera:et e e e e e e e e e e f y:ef:e e e e e e e e e f:py:permonary hemody-namics in Hread Dibain namics in Hread Dibain namics患者患者的肺部失败患者降低或术前的射血分数和肺部催眠率:相似性和差异。am Heart j₂₀₁₇;₂₀₁₇₂₀₁₇192:₁₂₀︲₁₂₇₁₂₀︲₁₂₇)Califf RM,Adams KF,McKenna WJ等:随机 -
1 加州公共卫生部艾滋病办公室监测和预防评估与报告处。2017-2021 年加州 HIV 流行病学。2023 年 12 月。2 药物滥用和精神健康服务管理局。药物使用障碍的低门槛护理模式。咨询。出版物编号 PEP23-02-00-005。马里兰州罗克维尔:药物滥用和精神健康服务管理局,2023 年。3 低门槛治疗计划 - 维基百科 4 Jakubowski A、Fox A。定义低门槛丁丙诺啡治疗。J Addict Med。2020 年 3 月/4 月;14(2):95-98。 doi: 10.1097/ADM.0000000000000555。PMID:31567596;PMCID:PMC7075734。5 Braun HM、Walter C、Farrell N、Biello KB、Taylor JL。COVID-19 大流行开始时当地 HIV 爆发期间,低门槛物质使用障碍桥接诊所的 HIV 暴露预防服务。J Addict Med。2022 年 11 月至 12 月 1 日;16(6):678-683。doi:10.1097/ADM.00000000000000991。PMID:36383918;PMCID:PMC9653062。 6 Linardon J、Cuijpers P、Carlbring P、Messer M、Fuller-Tyszkiewicz M。应用程序支持的智能手机干预对心理健康问题的有效性:随机对照试验的荟萃分析。世界精神病学。2019 年 10 月;18(3):325-336。doi:10.1002/wps.20673。PMID:31496095;PMCID:PMC6732686。7 Liu P、Astudillo K、Velez D、Kelley L、Cobbs-Lomax D、Spatz ES。低收入人群中使用移动健康应用程序:一项关于促进因素和障碍的前瞻性研究。Circ Cardiovasc Qual Outcomes。2020 年 9 月;13(9):e007031。 doi: 10.1161/CIRCOUTCOMES.120.007031。2020 年 9 月 4 日电子版。PMID:32885681。8 Gobin M、Dhillon S、Kesten JM、Horwood J、Dean GL、Stockwell S、Denford S、Mear J、Cooper R、Copping J、Lawson L、Hayward S、Harryman L、Vera JH。英国两城市使用数字自动售货机获取 STI 和 HIV 检测的可接受性。性传播感染。2024 年 2 月 1 日:sextrans-2023-055969。doi:10.1136/sextrans-2023-055969。电子版提前印刷。 PMID: 38302411。9 Stojanovic J、Wübbeler M、Geis S、Reviriego E、Guérrez-Ibarluzea I、Lenoir-Wijnkoop I。评估公共卫生干预:卫生技术评估中被忽视的领域。公共卫生前沿。2020 年 4 月 22 日;8:106。doi: 10.3389/fpubh.2020.00106。PMID:32391300;PMCID:PMC7188782。10 Campbell BR、Ingersoll KS、Flickinger TE、Dillingham R。弥合数字健康鸿沟:让艾滋病毒感染者在全球范围内公平获得移动医疗干预服务。抗感染治疗专家评论。 2019 年 3 月;17(3):141-144。doi:10.1080/14787210.2019.1578649。2019 年 2 月 20 日电子版。PMID:30721103;PMCID:PMC6693863。11 Koehle H、Kronk C、Lee YJ。数字健康公平:解决权力、可用性和信任问题以加强卫生系统。Yearb Med Inform。2022 年 8 月;31(1):20-32。doi:10.1055/s-0042-1742512。2022 年 12 月 4 日电子版。PMID:36463865;PMCID:PMC9719765。
1。Yanpiset P,Maneechote C,Sriwichaiin S,Siri-Angkul N,Chattipakorn SC,Chattipakorn N,Gasdermin D介导的心肌缺血和补偿性损伤的热吞作用:累积证据证据证明未来的心脏保护策略。acta pharm sin b。[在印刷中] 2。Pantiya P,Thonusin C,Sumneang N,Ongnok B,Chunchai T,Kerdphoo S,Jaiwongkam T,Arunsak B,Siri-Angkul N,Sriwichaiin S,Chattipakorn S,Chattipakorn N,Chattipakorn N,Chattipakorn SC。高心肺适应性可预防新陈代谢,心脏和大脑的分子损伤,在肥胖引起的早衰中具有更高功效。内分泌代谢。2022; 37(4):630-640。3。thonusin C,Pantiya P,Sunneang N,Chunchai T,Nawara W,Arunsak B,Siri-Angkul N,Sriwichaiin S,Chattipakorn SC,Chattipakorn N.高心脏呼吸性适应性在糖尿病前大鼠中具有高心脏验证能力的有效性。mol med。2022; 28(1):31。4。Sirikul W,Siri-Angkul N,Chattipakorn N,Chattipakorn SC。成纤维细胞生长因子23和骨质疏松症:从长凳到床边的证据。int J Mol Sci。2022; 23(5):2500。5。Buawangpong N,Pinyopornpanish K,Siri-Angkul N,Chattipakorn N,Chattipakorn SC。三甲胺-N-氧化物在阿尔茨海默氏病发展中的作用。J细胞生理。 2022; 237(3):1661-1685。 6。 Pharmacol Res。 2021; 173:105882。 7。 Siri-Angkul N,Dadfar B,Jaleel R,Naushad J,Parambathazhath J,Doye A,Xie LH,Gwathmey JK。 int J Mol Sci。 2021; 22(14):7392。J细胞生理。2022; 237(3):1661-1685。6。Pharmacol Res。2021; 173:105882。7。Siri-Angkul N,Dadfar B,Jaleel R,Naushad J,Parambathazhath J,Doye A,Xie LH,Gwathmey JK。int J Mol Sci。2021; 22(14):7392。khuanjing T,Ongnok B,ManeeChote C,Siri-Angkul N,Prathumsap N,Arinno A,Chunchai T,Arunsak B,Chattipakorn SC,Chattipakorn N.乙酰胆碱酯酶抑制剂通过毒素抑制剂抑制了毒素毒素的心脏毒素,并通过减少介质的介于ryciotiation nitectrip1-reducting Rip1-钙和心力衰竭:我们是如何到达这里的,我们要去哪里?8。Siri-Angkul N,Chattipakorn SC,Chattipakorn N.曲妥珠单抗的心律失常作用的机械见解。生物疗法的药物。2021; 139:111620。9。Piamsiri C,Maneechote C,Siri-Angkul N,Chattipakorn SC,Chattipakorn N.将坏死性靶向慢性心肌梗塞中的治疗潜力。J Biomed Sci。2021; 28(1):25。10。Wongtanasarasin W,Siri-Angkul N,Wittayachamnankul B,Chattipakorn SC,Chattipakorn N.致命性心律不齐的线粒体功能障碍。acta Physiol(Oxf)。2021; 231(4):E13624。- 联合第一作者11。Siri-Angkul N,Song Z,Fefelova N,Gwathmey JK,Chattipakorn SC,Qu Z,Chattipakorn N,Xie LH。在铁超载心肌细胞中激活TRPC(瞬态受体电势)通道电流。电动心律失常电生理学。 2021; 14(2):197-212。 12。 Kumfu S,Siri-Angkul N,Chattipakorn SC,Chattipakorn N. Lipocalin-2的沉默通过减少线粒体功能障碍和凋亡来改善铁超载条件下的心肌细胞生存能力。 J细胞生理。 2021; 236(7):5108-5120。 13。 J生理学。 2020; 598(19):4181-4195。 2020; 680:108241。电动心律失常电生理学。2021; 14(2):197-212。12。Kumfu S,Siri-Angkul N,Chattipakorn SC,Chattipakorn N. Lipocalin-2的沉默通过减少线粒体功能障碍和凋亡来改善铁超载条件下的心肌细胞生存能力。J细胞生理。 2021; 236(7):5108-5120。 13。 J生理学。 2020; 598(19):4181-4195。 2020; 680:108241。J细胞生理。2021; 236(7):5108-5120。13。J生理学。2020; 598(19):4181-4195。2020; 680:108241。Siri-Angkul N,Chattipakorn SC,Chattipakorn N.血管紧张素在肾素 - 血管紧张素系统抑制与冠状病毒疾病之间的界面上转化酶2。- 编辑的选择第14条。Sumneang N,Siri-Angkul N,Kumfu S,Chattipakorn SC,Chattipakorn N.铁超载对心肌细胞中线粒体功能,线粒体动力学和铁质吞噬作用的影响。Arch Biochem Biophys。
1。 日本肥胖学会肥胖治疗指南2022.2022; 2。 日本肥胖学会。关于2023年11月25日的肥胖药物的安全和适当使用的声明。 http:// wwwjasso.or..jp/data/introduction/pdf/academic- Information_statement_20231127.pdf 3。 Woodward M,Barzi F,Martiniuk A等:队列概况:亚太队列研究合作int j epidemiol2006; 35:1412-14164。 Yoshiike Nobuo,Nishi Nobuo,Matsushima Matsusui等人:基于体重指数的肥胖程度与糖尿病,高血压和高脂血症的危险因素之间的关系。肥胖研究2000;5。 2022年《动脉硬化疾病预防指南》:日本动脉硬化学会编辑。 2022;日本动脉粥样硬化化学协会东京。 6。 Lamon-Fava S,Wilson PW,Schaefer EJ等:体重指数对男性和女性的冠心病风险因素的影响Framingham后代研究Arterioscler Thromb Vasc Biol 1996;7。 Dattilo AM,Kris-Etherton PM:降低血脂和脂蛋白的影响:元分析AM J Clinr Nutr 1992;8。 Agata J,Masuda A,Takada M等:高血浆中的高血浆瘦素水平Am J Hypertens 1997; 10(10 pt1):1171-11749。 Newman LP,Torres SJ,Bolhuis DP,Keast RS:高脂餐对脂肪味道的影响Appetite 2016;10。 Huang Z,Willett WC,Manson JE等:体重,体重变化和女性高血压的风险Ann Intern Med 1998; 11。 Tokunaga K,Matsuzawa Y,Kotani K等 :从最低的体重指数估计的理想体重 Int J Obes 1991; 12。 Matsumura F,Yamashita S,Nakamura T等Ann Intern Med 1998;11。 Tokunaga K,Matsuzawa Y,Kotani K等:从最低的体重指数估计的理想体重Int J Obes 1991;12。 Matsumura F,Yamashita S,Nakamura T等:内脏脂肪积累对雄性肥胖受试者尿酸代谢的影响;与皮下脂肪肥胖相比,内脏脂肪肥胖与尿酸的过量生产更紧密地联系在一起。代谢1998; 47:929-933。13。 Yatsuya H,Toyoshima H,Yamagishi K等。:相对瘦的人群中的体重指数和中风和心肌梗塞的风险:使用单个数据对16个日本人群进行元分析。Circ Cardiovasc Qual成果2010; 3:498-505。14。 Eslam M,Sarin SK,Wong VW等。:亚洲太平洋协会的肝临床实践研究指南,用于代谢相关脂肪肝病的诊断和管理。Hepatol Int 2020; 14:889-919。15。 Rowland AS,Baird DD,Long S等。:医疗状况和生活方式因素对月经周期的影响。流行病学2002; 13:668-674。16。 佐藤:SDB とは・睡眠呼吸障害(SDB)を见逃さ2010;诊断と治疗社 ;诊断と治疗社17. Manek NJ,Hart D,Spector TD,MacGregor AJ等。:膝关节体重指数和骨关节炎的关联:遗传和环境影响的检查。关节炎Rheum 2003; 48:1024-1029。 18。 戸田佳孝:肥満した変形性膝关节症患者に対する各种关节炎Rheum 2003; 48:1024-1029。18。 戸田佳孝:肥満した変形性膝关节症患者に対する各种
人们经常要求使用建筑结构部件的耐火性能来预测或估计未经测试的结构的耐火性能。在某些情况下,有用的估计可能基于可用的数据。然而,在大多数情况下,最终结果气候的质量在很大程度上取决于评估人员对问题的经验和感觉。为了帮助更准确地做出此类估计,该局设计并建造了一个电子设备,用于进行必要的计算。对建筑物的各个部分进行了耐火测试,以确定建筑物在火灾影响下的适用性。虽然机械行为可能经常限制该结构在这方面的实用性,但通常情况下,热传输是决定其耐火能力的关键因素。此类测试 [1] 1 中使用的装置要求在炉内封闭结构中应用与标准火灾暴露相对应的时变温度函数。该程序还允许通过辐射和对流从样品未暴露部分发生热损失。这些条件使得使用分析方法解决传热方程变得不切实际。因此,使用一些高速近似方法来计算暴露于火中的结构的热行为似乎是可取的。人们考虑使用数字和传统模拟计算机,并取得了一定程度的成功,近似地解决了这些问题。然而,似乎使用热电路和电路之间的直接类比可能会在解决问题时提供更大的灵活性,并简化“编码”。该设备的构造与 Lawson & McGuire [2] 开发的设备有些相似。这直接利用了电气和热电路之间的类比,而不需要大量组装电子机械操作器或单元
2 Google Quantum AI,加利福尼亚州戈利塔 超导量子处理器是最先进的量子计算技术之一。基于这些设备的系统已经实现了后经典计算 [1] 和量子纠错协议的概念验证执行 [2]。虽然其他量子比特技术采用自然产生的量子力学自由度来编码信息,但超导量子比特使用的自由度是在电路级定义的。当今最先进的超导量子处理器使用 transmon 量子比特,但这些只是丰富的超导量子比特之一;在考虑大规模量子计算机的系统级优化时,替代量子比特拓扑可能会证明是有利的。在这里,我们考虑对 Fluxonium 量子比特进行低温 CMOS 控制,这是最有前途的新兴超导量子比特之一。图 29.1.1 比较了 transmon 和 Fluxonium 量子比特。 transmon 是通过电容分流约瑟夫森结 (JJ) 实现的,是一种非线性 LC 谐振器,其谐振频率为 f 01,非谐性分别在 4-8GHz 和 200-300MHz 范围内。transmon 有限的非谐性约为 5%,限制了用于驱动量子比特 f 01 跃迁的 XY 信号的频谱内容,因为激发 f 12 跃迁会导致错误。以前的低温 CMOS 量子控制器通过直接 [3,4] 或 SSB 上变频 [5,6] 复杂基带或 IF 包络(例如,实施 DRAG 协议)生成光谱形状的控制脉冲;这些设备中高分辨率 DAC 的功耗和面积使用限制了它们的可扩展性。fluxonium 采用额外的约瑟夫森结堆栈作为大型分流电感。这样就可以实现 f 01 频率为 ~1GHz 或更低的量子比特,而其他所有跃迁频率都保持在高得多的频率(>3GHz,见图 29.1.1)[7]。与 transmon 相比,fluxonium 的频率较低且非谐性较高,因此可以直接生成低 GHz 频率控制信号,并放宽对其频谱内容的规范(但需要更先进的制造工艺)。在这里,我们利用这一点,展示了一种低功耗低温 CMOS 量子控制器,该控制器针对 Fluxonium 量子比特上的高保真门进行了优化。图 29.1.2 显示了 IC 的架构。它产生 1 至 255ns 的微波脉冲,具有带宽受限的矩形包络和 1GHz 范围内的载波频率。选择规格和架构是为了实现优于 0.5° 和 0.55% 的相位和积分振幅分辨率,将这些贡献限制在平均单量子比特门错误率的 0.005%。它以 f 01 的时钟运行,相位分辨率由 DLL 和相位插值器 (PI) 实现,而包络精度则由脉冲整形电路实现,该电路提供粗调振幅和微调脉冲持续时间(与传统控制器不同,使用固定持续时间和精细幅度控制)。数字控制器和序列器可播放多达 1024 步的门序列。图 29.1.2 还显示了相位生成电路的示意图。DLL 将这些信号通过等延迟反相器缓冲器 (EDIB) 后,比较来自电压控制延迟线 (VCDL) 的第一个和第 31 个抽头的信号。这会将 CLK[0] 和 CLK[30] 锁定在 180°,并生成 33 个极性交替的等延迟时钟信号。使用 CLK[30] 而不是 CLK[32] 来确保在 PFD 或 EDIB 不匹配的情况下实现全相位覆盖,这可能导致锁定角低于 180°。一对 32b 解复用器用于选择相邻的时钟信号(即 CLK[n] 和 CLK[n+1]),开关和 EDIB 网络用于驱动具有可选极性的 PI。 PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。
Gene Yeo PhD MBA 是加州大学圣地亚哥分校 (UCSD) 细胞和分子医学教授,基因组医学研究所的创始成员,也是 UCSD 干细胞项目和摩尔斯癌症中心的成员。Yeo 博士拥有伊利诺伊大学香槟分校化学工程学士学位和经济学学士学位,麻省理工学院计算神经科学博士学位以及 UCSD 拉迪管理学院 MBA 学位。Yeo 博士担任 UCSD 生物信息学和系统生物学研究生课程联合主任以及遗传学 T32 培训项目副主任。Yeo 博士是一位计算和实验科学家,为 RNA 生物学和治疗学做出了贡献。他的主要研究兴趣是了解 RNA 加工的重要性以及 RNA 结合蛋白 (RBP) 在发育和疾病中的作用。自成立以来,Yeo 博士的实验室一直致力于揭示 RBPs 影响基因表达的分子原理、RBP 介导的转录后基因网络如何促进干细胞和大脑的细胞稳态,以及 RBPs 突变如何导致人类发育和神经退行性疾病。他的实验室率先在人类疾病相关系统中采用计算算法和实验方法,以进行系统和大规模研究。这些多学科方法结合了机器学习、生物化学、分子生物学、基因组学、化学和材料研究。他的实验室开发了系统、稳健且可采用的方法,例如用于大规模绘制蛋白质-RNA 相互作用的增强型 CLIP(Van Nostrand 等人,Nature Methods,2016 年)。 Gene 实验室是研究 RBPs 的主要资源贡献者,这些资源使生物科学许多领域的数百个实验室能够利用这些资源,例如世界上最大的 RBP 特异性抗体资源,这有助于生成和解释迄今为止最全面的数百种 RBP 的 RBP 结合位点图谱 (Van Nostrand 等人,Nature,2020)。他们还系统地发现了在应激过程中凝结成 RNA 颗粒的 RBPs,并展示了利用这些 RBPs 治疗神经退行性疾病的策略 (Markmiller 等人,Cell,2018;Fang 等人,Neuron,2019;Wheeler 等人,Nature Methods,2020)。他的实验室还展示了使用 CRISPR/Cas 蛋白的体内 RNA 靶向 (Nelles 等人,Cell,2016),并在重复扩增障碍中进行了概念验证 (Batra 等人,Cell,2017;Batra 等人,Nature Biomedical Engineering,2020)。最近,他的实验室开发了 STAMP 技术(Brannan 等人,Nature Methods,2021),这是第一种在转录组范围内识别 RNA 结合蛋白位点和以单细胞分辨率进行翻译测量的方法。Yeo 实验室的工作被《Nature Methods》和《Nature Reviews Genetics》列为“值得关注的方法”,并被《Discover》杂志列为头条新闻。这些努力促成了开发 RNA 相关疾病药物的临床项目。Yeo 博士撰写了 180 多篇同行评议出版物,包括神经退行性疾病、RNA 处理、计算生物学和干细胞模型领域的特邀书籍章节和评论文章;并担任两本 RNA 结合蛋白生物学书籍的编辑。Gene 是 Cell Reports、Cell Research 和 eLife 杂志的编辑委员会成员,也是 Review commons 的顾问委员会成员。Gene 于 2008 年加入加州大学圣地亚哥分校担任助理教授,2014 年晋升为副教授,2016 年晋升为教授。Gene 是索尔克研究所第一位克里克-雅各布斯研究员 (2005-2008)。其他奖项包括阿尔弗雷德·P·斯隆奖学金(表彰他在计算分子生物学领域的工作)(2011 年)、Alpha Chi Sigma-Zeta Chapter Krug 讲师奖(2016 年)、新加坡国家研究基金会访问研究员奖(2017 年)、国际 RNA 学会颁发的首届早期职业奖(2017 年)、Blavatnik 国家奖决赛入围者(2018 年和 2019 年)、圣地亚哥 Xconomy 奖“大创意”获得者(2019 年)和跨领域类别的高被引研究员(2019 年和 2020 年),表彰过去十年全球最具影响力的研究人员。Gene 还是 Paul Allen 杰出研究员(2020 年),并获得了 RNA 学会颁发的 2021 年 Elisa Izaurralde 研究、教学和服务创新奖。 Gene 是 Locanabio、Eclipse Bioinnovations、Enzerna、Proteona、Trotana 和 Circ Bio 等生物技术公司的联合创始人。Gene 曾任或担任 Allen Institute of Immunology、Locanabio、Eclipse Bioinnovations、Proteona、CircBio、Aquinnah、Cell Applications、Tecan、LGC、Sardona Therapeutics、Ladder Therapeutics、Insitro、Trotana、Nooma 和 Ribometrix 的科学顾问委员会成员。Gene 是 Accelerator Life Sciences Partners 的高级顾问。Gene 的实验室目前或之前曾得到美国国立卫生研究院、美国国家科学基金会、加州再生医学研究所、TargetALS、ALS 基金会、国防部、肌强直性营养不良协会、肌强直性营养不良基金会、陈-扎克伯格倡议、武田、基因泰克和罗氏的支持。 Gene 是圣地亚哥新冠疫情研究企业网络 (SCREEN,2020 年) 的创始人,也是圣地亚哥新冠疫情流行病学和研究联盟 (SEARCH,2020 年) 的创始成员。SCREEN 在圣地亚哥拥有约 1000 名科学家成员,专注于基层研究协调和社区外展。SEARCH 专注于病毒流行情况的流行病学研究,完成了一项涉及 12000 人的病毒传播研究。Gene 是 EXCITE (快速新冠识别环境) 实验室的联合主任,该实验室在 UCSD 进行新冠高通量测试,并且是 UCSD 重返学习指导委员会的成员。Gene 是 Biocom 重返工作岗位工作组的成员。吉恩是 DASL(2020 年多样性与科学讲座系列)的创始人,该系列为科学家提供了一个讨论多样性、公平性和包容性挑战并庆祝他们的科学成就的机会。吉恩于 1999 年在军官学校获得荣誉之剑(最高荣誉),并曾在新加坡海军担任海军军官。吉恩已经完成了 2 次全程铁人三项赛和多次半程铁人三项赛、奥运会铁人三项赛、短距离铁人三项赛、全程马拉松和半程马拉松,但现在花时间进行攀岩。
GE 的客户门户允许您通过单击浏览发动机车间手册、图解零件目录、服务公告等。如需更多信息,请联系您的 GE 代表或我们的航空运营中心 (AOC),电话:1-877-432-3272(美国)或 +1-513-552-3272(国际)。GE90 发动机为双引擎波音 777 飞机提供动力,它将创纪录的推力和高可靠性与更低的噪音、排放和燃料消耗相结合,成为一款因其尺寸和创新而得到全世界认可的标志性喷气发动机。复合材料风扇叶片 商用发动机采用复合材料风扇叶片,强度提高一倍而重量仅为传统钛风扇叶片的三分之一 – 现已成为 GE 宽体发动机的标志 世界推力纪录发动机达到 127,900 磅推力,创下世界纪录(此后在认证测试中被 GE9X 发动机以 134,300 磅的推力打破) 无 FOD 核心发动机采用内开式可变排气阀门,实现无 FOD(异物碎片)核心 增材部件 发动机获得 FAA 批准可使用增材制造压缩机传感器 GE 一直在投资和改进发动机。GE 工程师已经增强了 GE90-115B 发动机的压缩机、燃烧室以及高低压涡轮部件,以减轻重量、提高燃油效率和增强耐用性。与初始发布规格相比,燃油消耗降低了 3.6% 在翼时间提高了 60% 达到世界一流水平 99.98% 的可靠率 GE 已向世界各地交付了 2,800 多台 GE90 发动机,其及其全球维护、维修和大修 (MRO) 提供商网络可以随时随地为客户提供支持。通过 GE 的 TrueChoice 发动机服务套件,GE90 运营商可以使用 MRO 选项,这些选项可以优化发动机,通过有针对性的工作范围满足所需的生命周期,优化硬件利用率并最大限度地降低拥有成本。GE90-94B 发动机的额定推力为 94,000 磅,建立在早期 GE90 发动机型号的成功经验之上,用于为波音 777-200 和 777-300 飞机提供动力。在被波音公司选中开发推力为 110,000 至 115,000 磅的发动机后推力,GE 交付了 GE90-115B 发动机,现在为远程波音 777-200LR、777-300ER 和 777 货机提供动力。低压涡轮/高压涡轮最大直径(英寸)最大功率时的总压力比 1 GE90 - 简介 GE-90 涡扇发动机(剖面图)由通用电气与法国 SNECMA、日本 IHI 和意大利 FiatAvio 联合制造,并于最近(1995 年 9 月)首次由英国航空公司为其新波音 777 机队委托,它是当今最强大的商用飞机发动机。经认证的起飞推力为 380 kN(85,000 磅),仅需两台发动机便足以满足 777 等大型飞机的需要,该飞机可搭载 375 名乘客(重量约为 230 吨)。它是 GE/NASA 节能发动机 (E3) 项目的衍生产品,也是燃油效率最高的发动机,当今最安静、最环保的发动机。除了提供最高推力外,GE90 预计还能为航空公司带来 5-6% 的燃油效率提升、更低的噪音污染和 33% 的 NOX 排放量,比当今的高涵道比发动机低。本次研讨会试图通过简要介绍发动机的特点来突出发动机的各个方面。 2 比较高推力级涡扇发动机 (> 200 kN) (根据 [2] 修改) GE-90 CF6-50C2 CF6-80C2 公司通用电气 (美国) 通用电气 (美国) 通用电气 (美国) 自 1995 年 9 月 1978 年 10 月开始使用 1985 年 10 月首次在空客 A-340 和 B-777 上飞行 KC-10 (军用) A-300/310, 747/767 描述高涵道比 TF 双轴高 BPR TF 双轴高 BPR TF 重量 (干重) --- 3960 千克 4144 千克总长度 4775 毫米 4394 毫米 4087 毫米进气口/风扇直径 3124 毫米 2195 毫米 2362 mm压力比 39.3 29.13 30.4涵道比 8.4 5.7 5.05TO推力 388.8 kN 233.5 kN 276 kN巡航推力 70 kN 50.3 kN 50.4 kNS。燃油消耗(SLS) 8.30 mg/Ns 10.51 mg/Ns 9.32 mg/N-s空气质量流量 1350 kg/s 591 kg/s 802 kg/s是否存在FADEC* 是 否 是其他信息 NOx排放量降低33%。噪音比同级别的其他TF发动机低(由于风扇尖端速度低)。LPT的TET为1144 K。燃油消耗(sfc)比其他发动机低,寿命长,可靠性高。 RB-211-524G/H Trent-882 JT-9D-7R4公司劳斯莱斯(英国)劳斯莱斯(英国)普惠(美国)自 1990 年 2 月开始使用 1994 年 8 月(认证)1969 年 2 月(首次)首次飞行于 747-400 和 767-300 波音 777 波音 747/767、A310 描述三轴轴向 TF 三轴 TF 双轴 TF 重量(干重)4479 千克 5447 千克 4029 千克总长度 3175 毫米 4369 毫米 3371 毫米进气口/风扇直径 2192 毫米 2794 毫米 2463 毫米压力比 33 33+ 22 涵道比 4.3 4.3+ 5TO 时推力 269.4 kN 366.1 kN 202.3 kN巡航时推力 52.1 kN 72.2 kN 176.3 kNS.FC 15.95 mg/Ns(巡航)15.66 mg/Ns(巡航)10.06 mg/N-s空气质量流量 728 kg/s 728+ kg/s 687 kg/sFADEC(Y/N)否是否其他信息合同中(截至 95 年 9 月)世界上功率最强大的常规空调发动机(Trent 772)*FADEC - 全自动数字发动机控制 • 降低燃油消耗。• 通过与飞机计算机交互,更好地控制发动机并减少飞行员的工作负担。• 降低飞机运营成本。低推力级涡扇发动机 (< 200 kN) ([2] 之后改进) 3 CFM56-5C2 JT-8D-17R V 2500-A1公司 CFM International (法国) & GE (美国)Pratt & Whitney (美国) Intl.航空发动机(美国) 自 1992 年底开始使用 1970 年 2 月 1988 年 7 月 首次在空客 A-340 波音 727/737 和 DC-9 空客 A-320 上飞行 描述 双轴亚音速 TF 轴流双轴 TFT 双轴亚音速 TF 重量(干重) 2492 千克(裸机)3856 千克(约) 1585 千克 2242 千克(裸机)3311 千克(带动力装置) 总长 2616 毫米 3137 毫米 3200 毫米进气口/风扇直径 1836 毫米 1080 毫米 1600 毫米 压力比 37.4 17.3 29.4 涵道比 6.6 1.00 5.42 TO 时推力 138.8 kN 72.9千牛 111.25 kN巡航推力30.78 kN18.9 kN21.6 kN SFC16.06 mg/Ns23.37 mg/Ns16.29 mg/N-s空气质量流量466 kg/s148 kg/s355 kg/sFADEC(Y/N)是否是其他信息4 GE-90涡扇发动机循环分析以下是借助计算机程序进行的简单大涵道比涡扇发动机循环分析的结果。分析理论可参见[3]。更广泛和准确的分析可参见[4]。GE90发动机的可用数据仅限于其起飞推力、涵道比(BPR)和总压比(OPR)。其余数据是暂定的,是基于其他类似的 GE 发动机(例如 CF6-80C2 和 CFM56)并考虑了适当的改进而得出的。发动机数据进气效率 = 0.980风扇多变效率 = 0.930压缩机多变效率 = 0.910涡轮多变效率 = 0.930等熵喷嘴效率 = 0.950机械效率 = 0.990燃烧压力损失(比率) = 0.050燃料燃烧效率 = 0.990热喷嘴面积 = 1.0111 m2冷喷嘴面积 = 3.5935 m2设计点(巡航)非设计点(起飞)高度(公里)10.668 0.000马赫数0.850 0.000RAMPR 1.590 1.000FPR 1.650 1.580LPCPR 1.140 1.100HPCPR 21.500 23.000OPR 40.440 39.970Pa(巴)0.239 1.014Ta(K)218.820 288.160Ca(米/秒)252.000 0.000BPR 8.100 8.400TIT(K)1380.000 1592.000ma(千克/秒)576.000 1350.000推力(kN)69.200 375.300mf(千克/秒)1.079 2.968SFC(毫克/纳秒)15.600 7.910Sp。推力(Ns/kg) 120.100 278.100 计算出的巡航推力值与装有两台 GE90 发动机的波音 777 飞机所需的推力(每台发动机约 65-70 kN)非常接近。 93759555539.pdf 5 设计点运行图(巡航)推力和 SFC 与 FPR 64 65 66 67 68 69 70 1.40 1.43 1.46 1.49 1.52 1.55 1.58 1.61 1.64 1.67 1.70 1.73 1.76 1.79 FPR 推力 ( kN) 15.50 15.75 16.00 16.25 16.50 16.75 17.00 推力 SFC 推力和 SFC 与 OPR 66 68 70 72 74 76 78 20 22 24 26 28 30 32 34 36 38 40 42 44 46 OPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 推力 SFC 6 推力 & SFC vs BPR 50.0 57.5 65.0 72.5 80.0 87.5 95.0 102.5 110.0 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 BPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 推力SFC 推力 & SFC vs TIT 40 50 60 70 80 90 100 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 TIT (K) 推力 ( kN) 15 16 17 18 19 20 21 推力 SFC 7 认证 ([1] 和 [2]) 里程碑 日期 事件 1992 年 11 月 首次核心测试 1993 年 3 月 第一台发动机以 377.8 kN 推力进行测试 1993 年 4 月 第一台发动机以 468.5 kN 推力进行测试 1993 年 12 月 第一个 GE90 飞行试验台在波音 747 上飞行 1994 年 11 月 GE90 认证388.8 kN 推力 1994 年 12 月 首次波音 777 飞行测试 1995 年 8 月 波音 777/GE90 飞机认证 1995 年 9 月 波音 777/GE90 投入使用 GE90 地面和飞行测试 - 随着 FAA 对 GE90 的认证,GE 航空发动机公司完成了有史以来最广泛的地面和飞行测试项目之一,这是发动机制造商开展过的项目之一。GE 于 1990 年 1 月宣布开发 GE90。1992 年 11 月,第一台全尺寸发动机核心机开始测试;随后,1993 年 3 月,第一台全尺寸发动机投入使用。unisolve_pharmacy_software_manual.pdf 自那时起,GE 及其收益共享参与者共运行了 13 台开发发动机,验证了发动机固有的设计优势。总体而言,这些发动机的运行时间超过 5,000 小时,包括在 GE 改装的波音 747 飞行试验台上飞行的 228 小时。GE90 耐力发动机完成了超过 14,000 个循环,并展示了出色的分段耐久性。七台发动机的推力超过 100,000 磅(444.5 千牛),其中一台创下了 110,000 磅(489 千牛)的推力纪录。事实上,GE90 开发发动机的推力水平已超过 100,000 磅(444.5 千牛),持续超过 65 小时。作为必需认证测试的一部分,GE90 成功完成了 2.5 磅和 8 磅(1.13 千克和 3.63 千克)的复合叶片鸟吞测试。1994 年 10 月,在炎热天气下,四台 2.5 磅的鸟被吞噬,发动机以产生 85,000 磅(377.8 千牛)推力所需的速度运转。没有推力损失,发动机在吸入后所需的 20 分钟运行时间内响应所有油门指令。所有风扇叶片都处于良好状态,并继续在其他发动机测试中运转。1994 年 11 月中旬,GE 在 FAA 的陪同下进行了风扇叶片引爆测试。释放叶片以 2,485 rpm 的风扇速度引爆,比目标速度高出 10rpm,发动机产生超过 105,000 磅(466.8kN)的海平面静态(SLS)校正推力。发动机支架系统按设计运行,测试证明了风扇叶片的遏制力。复合材料风扇叶片的坚固性得到成功展示,8 观察到的尾部叶片损坏与测试前分析相符,验证了复合材料叶片设计的固有优势。GE90 于 1993 年底首次飞行,安装在 747 飞行试验台上。在第一阶段的测试中,该发动机在 45 次飞行中累计飞行了近 228 小时。发动机表现异常出色,其性能水平超出规格,并在整个飞行包线内为飞行员提供了不受限制的油门运动。34042629589.pdf 为什么要使用全新发动机?市场要求从历史上看,飞机的重量和推力要求不断增加。lowrider 汽车展评判评分表今天,市场青睐重量更重、航程更远、内置推力增长的飞机。增长图 1 增长图 2 上述增长图显示,趋势有利于使用 GE90 驱动的大型宽体飞机。为航空公司的未来做好准备 • 为整个新型大型飞机系列提供通用发动机。• 新型宽体飞机需要比现在的发动机高 20-30% 的推力。• 历史上飞机需要 20-30% 的额外推力来增加 TOGW。现代循环设计具有内在的总体性能优势• 比今天的发动机高 10% 的 SFC。• 高推力增长与通用性。• 低噪音和排放。结合“经验教训”的成熟技术的可靠性。GE90 设计GE90 设计用于:• 推力增长。• 与 777 飞机系列的发动机通用性。• 燃油效率。• 180 分钟 ETOPS(延长双发运行)。9• 低排放。• 低噪音。• 降低运营成本。选择可显著节省燃油的循环。总计其余乘以三级• 涵道比优化。• 总压比优化。• 设计用于最低 SFC 和燃油消耗。 10. 总结 pdf 选择的设计可使航空公司获得最大利益。• 设计和演示高可靠性技术。• 以 CF6 和 CFM56 可靠性为基础。• ETOPS 批准。• 运营商制定的维护程序。• 低噪音、低排放设计。• 最低运营成本设计。发动机尺寸符合未来飞机的要求。• 初始认证推力为 84,700 磅(376.5 kN)- 1995 年 2 月• 首次增长认证推力为 92,000 磅(408.9 kN)- 1996 年 5 月。• 可能增长到 120,000 磅(533.4 kN)。高推力和测试经验总结• > 422.3 kN 下超过 145 小时• > 435.6 kN 下超过 95 小时• > 440.0 kN 下超过 75 小时• > 444.5 kN 下超过 65 小时• > 444.5 kN 下在 900-105/1A 上连续运行 20 小时注:海平面静态(SLS)校正推力水平八台 GE90 发动机已在 445 kN 的 SLS 推力下或以上运行。进行了各种测试• 风扇测绘。• 助推器应力调查。• 超速认证(490.3 kN)。• 三重红线段测试“彩排”。• 1.13 公斤鸟牌认证/叶片伸出认证。 10 发动机及其部件 ([2]) GE-90 涡扇发动机(横截面图)以下是发动机的主要部件 - 1. 复合风扇2. 低压压缩机 (LPC)/增压器3. 高压压缩机 (HPC)4. bugavufawenesa.pdf 双圆顶燃烧室5. 高压涡轮 (HPT)6. 低压涡轮 (LPT) 11 复合风扇 GE90 风扇设计 风扇图 • 22 个复合宽弦叶片和平台。• 大风扇直径可实现更高的空气质量流量。• 风扇齿轮传动 - 降低风扇尖端速度,从而产生更少的噪音。• 低尖端速度和压力比,实现安静高效的运行。• 轻质三网盘,便于检查并减轻重量。• 混合(圆锥形/椭圆形)旋转器,减少核心碎片摄入。• 风扇压力比 (FPR) 约为 1.60-1.65(暂定)。 GE90 风扇叶片 风扇叶片 • 宽弦复合风扇 – 性能高、重量轻。• 耐环境性 – GE90 风扇材料系统表现出与当前飞机复合材料相同的耐环境性。12 • GE90 风扇复合材料系统与目前服役的风扇复合材料系统类似。 • 完全暴露在航空液体中的层压样品通常可保持 95% 的基本性能。 • 实际叶片完全受聚氨酯涂层保护。• 不暴露于紫外线辐射。 复合材料风扇开发历史• GE90 复合材料叶片受益于 25 年的开发。• 材料、制造和计算方面的进步提供了必要的技术。 los baker van a peru book pdf 13 压缩机 压缩机图 第一级 HPC 叶片 •结构类似于成功的 CFM56。•紧凑的发动机结构。•坚固的低纵横比翼型。•减少零件数量。•降低运营成本。•短 LPC/助推器 - 3 个阶段。•LPC 压力比(LPCPR)约为 1.10-1.14(暂定)。•低 LPT 入口温度以增加推力。•10 级 HPC,压力比为 23:1(HPCPR)。•NASA 节能发动机(E3)的扩大规模在测试单元和飞行测试中都展示了性能和可操作性。 燃烧室 •来自成功的先进军事计划的双圆顶环形燃烧室。 • 降低 NOX 排放水平(低至 10 ppm)。• 降低未燃烧的碳氢化合物、一氧化碳和烟雾水平。• 提高可操作性。• 长寿命衬套结构。• 针对功率设置进行调节的圆顶气动热调节。• 高度重新点火能力 30,000 英尺(9.144 公里),留有余地。14 涡轮机涡轮图 HP 涡轮叶片 - 分别为 1 级和 2 级。 • 高压涡轮机采用了成熟的设计技术。• 6 级 LPT 和 2 级 HPT。• 类似于 CFM56 的刚性、简单支撑转子系统,可实现动态稳定性。• 仿照成功的 CF6-80 设计设计的无螺栓组装翼型和罩壳冷却回路。• 从成熟的涡轮机经验中引入薄膜冷却技术。• 多孔涡轮冷却技术 - 冷却效果更佳。• 成功的 CF6-80 设计和被动间隙控制系统特点。• 带有激光钻孔冷却孔图案的第 1 级 HPT 叶片铸件(材料 N5)。• 带有激光钻孔冷却孔图案的第 2 级 HPT 叶片(材料 N5)。• 基于 CFM56 和 CF6-80 设计的模块化喷嘴组件。 15 其他特点 ([2]) GE90 和环境 减少排放和烟雾 • 双圆顶燃烧室。• 降低噪音。• 低风扇压力比和大纵横比低压涡轮。• 总体上降低任务总燃料消耗 = 降低任务总污染物。• 提高推力与核心流量比。 GE90 燃烧室在降低排放水平的同时提高了可操作性 • 双环形燃烧室。• 优化了飞行员圆顶以提高可操作性 - 优化了主圆顶以提高功率。• 减少排放 基于 15 年的 NASA 和先进军用发动机开发经验。• 全面的 GE90 测试。• 出口温度曲线符合设计意图。• 验证了排放水平。 可运输性• 针对标准发动机运输方法设计。GE90推进器• 比今天的高涵道比涡扇发动机更小 GE90模块化设计• 只允许更换推进器• 推进器/喷嘴与风扇定子模块分离• 风扇定子模块留在主基座或飞机上• 拆卸和更换时间估计少于6小时 16 GE90的未来 ([2]) 推力增长GE90组件的尺寸适合增长。如果市场需要,通过进一步投资,GE90可以产生110,000磅(511千牛)的推力。通用电气打算通过以下方式实现推力增量 - • 376.5千牛风扇认证发动机。B777“B”市场。 • 409 kN 风扇改进的 LPT 材料。增强的 HPT 冷却和第一级叶片 TBC。B777“B”市场。B777 拉伸。 • 422.3 - 435.6 kN 风扇改进的涡轮机械。 • 466.8 kN 风扇带有降级核心的更高 P/P 风扇。 • 511.2 + kN TF带有降级核心的更高速度和 P/P 风扇。 17 结论可以看出,GE90 确实是 90 年代最强大、最高效的商用运输发动机。 85086163020.pdf 它还具有足够的推力增长空间,以满足未来的需求。虽然缺乏有关该发动机的确切技术信息(例如其重量、压力比、TIT、巡航推力、sfc 等),导致本报告中的数据具有不确定性,但与其他发动机的比较清楚地表明,它在推力和燃油效率方面是独一无二的。18 参考文献 1.