光学通信集成电路的设计涉及各种技术,以提高性能,鲁棒性和功率效率。本文讨论了使用不同拓扑结构的无电感器,可变带宽和功率可观的光接收器前端的发展。它突出了校准时钟和数据恢复系统以最大程度地减少能息影响的重要性。该设计还提出了在65 nm CMOS工艺中制造的高增益宽带逆变器的cascode变速器放大器。多个带宽增强技术用于改善放大器的性能。此外,本文提出了一种低功率医疗设备和高通用性电子设备,该设备几乎没有功耗。20-Gb/s时钟和数据恢复电路的设计结合了用于低功率耗散的高速操作的注射锁定技术。频率监控机制可确保VCO固有频率和数据速率之间的密切匹配。此外,该文章介绍了在0.13 UM CMOS过程中制造的10 GB/S爆发模式变速器放大器(BMTIA),该过程已用于被动光网(PONS)中的爆发模式接收器。SIGE BICMOS中155-MB/S-4.25-GB/S激光驱动器的设计可在具有分段的驱动器切片方案的广泛调制电流上保持动态性能。CDR IC具有添加的Demux功能,并在尖端生产技术中实现。通过引用有关该主题的著名论文和书籍,讨论了硅光子学的最新进展。B.最后,本文讨论了CMOS光学收发器的设计,该收发器符合IEEE802.3AH PX20标准的规格,并在/SPL PlusMn/0.4 DBM和/splplusmn/0.6 db中成功抑制了宽度从-40到100/spl spl deg/c/c。第一本关于可编程光子学的全面书籍提供了对基本原理,架构和潜在应用的深入概述。几项重要的研究表明,用于深度学习,量子信息处理和其他用途的大规模可编程光子电路。最近的一项研究提出了基于氮化硅波导的8×8可编程量子光子处理器,表现出低光损失,对单个光子上的线性量子操作有吸引力(Taballione等,2018)。这项成就引发了人们兴趣探索可编程光子电路处理微波信号的功能。研究人员在开发通用离散的傅立叶光子光子集成电路架构(Hall&Hasan,2016),玻璃芯片上可重构的光子学(Dyakonov等,2018)和光学处理器实现的神经网络(Shokraneh等人,2019年)方面取得了重大进展。这些进步为创新应用打开了大门,例如具有DSP级灵活性和MHz波段选择性的光子RF过滤器(Xie等,2017)。大规模硅量子光子学的发展也使实施了任意的两Q量处理(Qiang et al。,2018)和具有集成光学的多维量子纠缠(Wang等,2018)。pai,S。等。IEEE J. SEL。IEEE J. SEL。此外,还使用可重构光子电路来生成,操纵和测量纠缠和混合物(Shadbolt等,2012)。此外,研究的重点是使用纯正的可编程网格(Annoni等,2017)进行解散光,并实施了综合透明检测器,这些透明检测器可以测量光强度而不诱导额外的光损失。这些可编程光子电路中的这些进步为量子计算,电信及以后的创新应用铺平了道路。任意前馈光子网络的并行编程。顶部。量子电子。25,6100813(2020)。 Reck,M.,Zeilinger,A.,Bernstein,H。J. &Bertani,P。任何离散统一操作员的实验实现。 物理。 修订版 Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。25,6100813(2020)。Reck,M.,Zeilinger,A.,Bernstein,H。J. &Bertani,P。任何离散统一操作员的实验实现。 物理。 修订版 Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。Reck,M.,Zeilinger,A.,Bernstein,H。J.&Bertani,P。任何离散统一操作员的实验实现。物理。修订版Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。Lett。73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。&Bogaerts,W。耐受性,宽带可调2×2耦合器电路。选择。Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E.使用双驱动方向耦合器的集成光子可调基本单元。选择。Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A.&Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。J.光。技术。38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。38,723–735(2020)。插图广告Google Scholar Miller,D。A.J. Opt。Soc。B.使用自配置网络分析和生成多模光场。Optica 7,794–801(2020)。插图广告Google Scholar Morizur,J.-F。等。可编程的统一空间模式操作。am。A 27,2524(2010)。插图广告Google Scholar Labroille,G。等。基于多平面光转换的高效和模式选择性空间模式多路复用器。选择。Express 22,15599–15607(2014)。饰物ADS PubMed Google Scholar Tanomura,R.,Tang,R.,Ghosh,S.,Tanemura,T。&Nakano,T。使用多层方向耦合器使用多层方向性耦合器。J.光。技术。38,60–66(2020)。库ADS CAS Google Scholar Miller,D。A. B. 设置干涉仪的网格 - 反向局部光干扰方法。 选择。 Express 25,29233(2017)。库ADS CAS CAS Google Scholar Li,H。W.等。 校准和量子光子芯片的高保真度测量。 新J. Phys。 15,063017(2013)。插图广告Google Scholar Cong,G。等。 通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。 选择。 Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。 多功能硅光子信号处理器核心。 nat。 社区。 8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。38,60–66(2020)。库ADS CAS Google Scholar Miller,D。A.B.设置干涉仪的网格 - 反向局部光干扰方法。选择。Express 25,29233(2017)。库ADS CAS CAS Google Scholar Li,H。W.等。校准和量子光子芯片的高保真度测量。新J. Phys。15,063017(2013)。插图广告Google Scholar Cong,G。等。 通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。 选择。 Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。 多功能硅光子信号处理器核心。 nat。 社区。 8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。15,063017(2013)。插图广告Google Scholar Cong,G。等。通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。选择。Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。多功能硅光子信号处理器核心。nat。社区。8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。8,1–9(2017)。此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。单层整合的多层硅二硅硅波导平台的最新进展已使三维光子电路和设备的开发(Sacher等,2018)。AIM Photonics MPW已成为一种高度可访问的技术,用于快速的光子综合电路(Wahrenkopf等,2019)。此外,具有紧凑的平面耦合器,跨言式缓解和低跨界损失的多平面无定形硅光子的发展进一步扩大了光子整合电路的能力(Chiles等,2017)。在热控制方面,已经提出了对硅光子电路的热控制的各种加热器架构,包括用于CMOS兼容的硅热硅热电器(Van Campenhout等,2010)的NISI波导加热器(Van Campenhout等,2010),并取消热跨与光的跨核电效应,对光电综合通道效应(MilanizaDeh et al。)。电流效应也在硅中进行了研究,并在光学调节剂中进行了重要应用(Reed等,2010)。此外,用于集成光子学的硅氧核平台的开发使创建具有降低光学损失的光子设备(Memon等,2020)。压电调谐的氮气环谐振器也已被证明,并具有潜在的光子整合电路中的应用(Jin等,2018)。此外,使用压电铅锆钛酸钛酸盐(PZT)薄膜开发了应力调节剂,从而可以创建可调光子设备(Hosseini等,2015)。Wuttig等。派兰多·赫兰兹(Errando-Herranz)等。Quack等。使用液晶壁板还可以广泛调整硅在隔离器环谐振器中,并具有潜在的光子整合电路中的应用(De Cort等,2011)。此外,使用具有液晶浸润的SOI插槽波导开发了数字控制的相变,从而可以创建可调光子设备(Xing等,2015)。最后,在硅硅酸盐和纳米结构的钛酸钡中已证明了大型的效应,并在光子综合电路中具有潜在的应用(Abel等,2019)。开发了用于非易失性光子应用的相变材料。研究了启用MEMS的硅光子集成设备和电路。研究了启用了MEMS硅光子集成设备和电路的性能。通过通用可编程光子电路降低原型光子应用的成本是一个不断增长的领域。几项研究探索了这些电路在各个领域的潜力,包括硅光子系统和IIII-V-ON-ON-ON-ON-ON-ON-ON-ONICON整合。研究人员一直在开发技术,例如用于控制大型硅光子电路的热光相变,以及用于硅光子平台中高速光学互连的活性组件。这些进步可能有可能使创建更有效,更可扩展的光子系统。此外,研究还研究了III-V材料在硅底物上的整合,这可能会导致改善的性能和降低光子学应用的成本。研究人员还一直在探索通过创新来提高光学互连效率的方法,例如基于转移打印的III-V-n-Silicon分布式反馈激光器的集成。最近的工作集中在开发可编程的光子电路上,这些电路可以针对不同的应用进行重新配置,从而有可能减少原型制作所需的成本和时间。这些电路可用于各种光子系统,从高速光学互连到量子技术。还研究了这些发展的经济可行性,研究人员探索了通过使用通用可编程光子电路来降低成本的方法。此外,一些研究已经深入研究了新的应用,例如全光信号处理和光学证明,突出了各个领域的光子学的巨大潜力。改写文本:对光子相关的研究论文的调查和来自信誉良好的来源的文章揭示了对微波信号处理的可编程光子组件的重视。值得注意的是,最近的研究集中在使用集成波导网格的可重构光学延迟线和真实时延迟线的发展。此外,人们对无线电纤维技术,激光雷达系统体系结构和量子计算应用的兴趣越来越大。光子学与其他技术的整合已导致在诸如光谱传感,激光多普勒振动法和光束束成形和转向等领域的显着进步。尽管最初令人兴奋,但身体和经济因素阻碍了进步。此外,对光子生物传感器,硅光子电路和六束同伴激光多普勒振动的研究表明,在各种应用中的准确性和效率提高了潜力。最近的研究还强调了可编程超导处理器和量子机学习算法的重要性。已经探索了使用集成波导网格的可重构光学延迟线和真实时延迟线的开发,重点是提高信号处理能力。用于光谱传感的硅光子电路和六光同源性激光多普勒振动法在各种应用中显示出令人鼓舞的结果。量子计算研究继续前进,最近的研究表明使用可编程超导处理器进行量子至上。光子学与其他技术的集成为改进信号处理,传感和计算功能开辟了新的可能性。Ivan P. Kaminow的2008年Lightwave Technology Journal of Lightwave Technology文章重点介绍了自1969年以来光学综合电路的希望。最近的商业发展可能标志着光子摩尔定律曲线的开始。关键里程碑包括从可见的LED到III-V光子综合电路(图片)的过渡。审查了显着的进步,例如大规模INP发射器和接收器图片,速度高达500 GB/s和1 TB/s。此外,自从CMOS晶圆晶片级集成以来,硅光子电路包装已显着改善。专家通过通用的基础方法预测了微型和纳米光子学的革命,与三十年前的微电子中类似创新的影响相呼应。硅光子学有望为从电信到生物医学领域的各种应用提供低成本的光电溶液。
量子计算代表了计算领域的一种范式转变,它有可能解决传统计算机无法解决的复杂问题。尽管目前的量子处理器已经包含几百个量子比特,但它们的可扩展性仍然是一个重大挑战。模块化量子计算架构已成为一种有前途的量子计算系统扩展方法。本文深入探讨了分布式多核量子计算的关键方面,重点研究了量子电路映射,这是一项基本任务,可成功跨核心执行量子算法,同时最大限度地减少核心间通信。我们推导出随机量子电路所需的非局部通信数量的理论界限,并介绍了匈牙利量子比特分配 (HQA) 算法,这是一种多核映射算法,旨在优化对核心的量子比特分配,以减少核心间通信。我们对 HQA 与模块化架构的最新电路映射算法进行了详尽的评估,结果表明,与性能最佳的算法相比,HQA 在执行时间和非局部通信方面分别提高了 4.9 倍和 1.6 倍。 HQA 是一种非常有前景的可扩展方法,用于将量子电路映射到多核架构中,使其成为大规模利用量子计算潜力的宝贵工具。
摘要 — 随着量子程序的规模不断增长,以匹配传统软件的规模,量子软件工程这一新兴领域必须成熟,调试器等工具将变得越来越重要。然而,由于量子计算机的性质,开发量子调试器具有挑战性;偷看量子态的值将导致叠加部分或完全崩溃,并可能破坏必要的纠缠。作为开发完整量子电路调试器的第一步,我们设计并实现了一个量子电路调试工具。该工具允许用户将电路垂直或水平划分为较小的块(称为切片),并管理它们的模拟或执行,以进行交互式调试或自动测试。该工具还使开发人员能够跟踪整个电路和每个块内的门,以更好地了解它们的行为。早期用户对实用性和可用性的反馈表明,使用该工具切片和测试他们的电路有助于使他们的调试过程更省时。索引术语 — 量子电路、调试、量子软件
在本章中,我们将解释互补金属氧化物半导体 (CMOS) 电路中的两种功耗类型。一般而言,CMOS 电路在任何时候都会耗散功率 — 无论是活动状态还是非活动状态。电路在执行计算任务时消耗的功率称为动态功率。相反,在电路处于休眠状态期间由于漏电而损失的功率称为静态功率。通过精心设计电路,可以将漏电抑制到最低限度。因此,动态功耗通常明显高于静态功耗。可以采用的一些节省动态功耗的技术包括降低电源电压、时钟频率、时钟功率和动态有效电容。通过探究设计模块的活动因素,可以将这些技术应用于高功耗模块。
本工作致力于微波路径平面元件开发的某些方面,这些元件用于低噪声 LTE 范围放大器的设计,即电感器,以便进一步用作 NB-IoT 收发器的一部分。给出了高频电感器设计的一般理论计算。以标称值为 7 nH 的多层 CMOS 90 nm 电感器为例,我们通过电磁 (EM) 模型展示了通过复制层获得的结构厚度的影响,该结构厚度用于获得所需的表皮层厚度并在 0.5 至 3.5 GHz 的 LTE 频率范围内实现最佳品质因数。为了更好地理解电感器的工作原理,比较了针对不同基板电导率值进行 EM 模拟所获得的模型。获得的数据部分反驳了通过使用多个 TSV 阵列组合一组硅工艺堆栈的上部金属来增加电感器最大厚度的必要性。由于基板对电感器下部金属层的电容影响不断增大,尽管趋肤效应对低频有负面影响,但仍可以通过具有最少金属层的结构来实现最高的Q值和自谐振频率。
我们提出了使用COQ证明助手编写的第一个用于量子电路的第一个完全验证的优化器。量子电路以简单的低级语言表示为程序,称为SQIR,一种简单的量子中间表示形式,它深层嵌入了COQ中。优化和其他转换表示为COQ函数,相对于SQIR程序的语义,证明是正确的。sqir使用复数矩阵的语义,这是量子计算的标准,但象征性地对待矩阵以推理使用任意数量量子位的程序。SQIR的仔细设计和我们提供的自动化使得在VOQC中编写和验证广泛的优化是可能的,包括来自尖端优化器的全电路转换。
结型场效应晶体管(JFET)可能是最简单的晶体管。它具有一些重要特性,尤其是非常高的输入电阻。然而不幸的是(对于 JFET 而言),MOSFET 的输入电阻甚至更高。这一点,加上 MOS 晶体管的许多其他优点,使得 JFET 几乎过时了。目前,它的应用仅限于分立电路设计,其中它既用作放大器,又用作开关。它的集成电路应用仅限于某些运算放大器的差分输入级的设计,其中利用了它的高输入电阻(与 BJT 相比)。在本节中,我们简要介绍 JFET 的工作原理和特性。将 JFET 纳入电子学研究的另一个重要原因是,它有助于理解砷化镓器件的工作原理,这是下一节的主题。
在理论机器学习中,统计复杂性是衡量假设空间丰富性的概念。在这项工作中,我们将特定的统计复杂性量度(即Rademacher复杂性)应用于量子计算中的量子电路模型,并研究统计复杂性如何取决于各种量子电路参数。,我们研究了统计复杂性对量子电路的资源,深度,宽度以及输入和输出寄存器的数量的依赖性。为了研究统计复杂性如何通过电路中的资源扩展,我们基于(p,q)组规范引入了魔术的资源度量,该魔法量化了与电路相关的量子通道中的魔术量。这些依赖性在以下两个设置中进行了研究:(i)整个量子电路被视为单个量子通道,以及(ii)量子电路的每一层被视为单独的量子通道。我们获得的界限可用于根据其深度和宽度以及网络中的资源来限制量子神经网络的能力。
量子计算量子传送和掉期Masatsugu sei sei sei sei sei sei sei sei s.uko S.铃木物理局,宾汉顿(Binghamton)的Suny(日期:04,2021)量子电路是一种电路(例如Wheatstone Bridge and Ladder Circile)(例如,可以研究巡回演出)(例如,均可进行分析)(例如,电路)(例如,电动机)(电用级别)。对于复杂的电路(例如网络),必须使用电路分析定理(例如theorem定理和诺顿定理)。因此,通过使用相应的等效电路,电路变得更加简化。对于量子计算可能是正确的。我们还可以将各种技术(基于量子力学)应用于量子电路(例如量子传送和交换)。等效电路可用于简化量子电路。在网站中,我们发现了一篇非常有趣的文章,内容涉及量子传送和交换电路之间的量子计算机电路的讨论。对于一个人来说,掉期电路实际上等同于量子传送,这是令人惊讶的。标题:从简单的电路移动从交换到传送; https://algassert.com/post/1628。在本文的介绍中,我们发现了以下令人兴奋的陈述。“我们将证明量子传送作品有效。在第二座讲座(量子传送,由埃索助安倍座(Eisuke Abe),凯奥大学(Keio University)于2009年11月15日完成),在与掉期电路的关联中讨论了量子传送电路的量子电路。不是通过仔细考虑其如何影响输入状态的方式,而是从显然将量子器从一个地方移动到另一个位置的电路,然后应用简单的明显校正转换,直到我们最终获得量子传送电路。”我们也有一个绝佳的机会,可以在网站(日语)中听到量子计算机上的一系列讲座。我们对量子传送和交换之间的量子电路可能的等效性印象深刻。请注意,不幸的是,这些讲座是在日语中进行的。在这里,我们将证明掉期电路的量子电路基本上等同于量子传送。本讲座主要是为了重现Abe Eisuke的讲座内容。换句话说,本说明中没有什么新的。尽管如此,我们认为本讲座的内容可能对想了解量子纠缠原则的本科生和研究生非常有用[Alice(A),Bob(b)和Charlie(C)]的量子纠缠原则[量子传送。爱丽丝(Alice)与爱丽丝(Alice)和查理(Charlie)共享后立即将查理(或州)的信息交付给鲍勃。在这里,我们讨论了基于讲座的量子传送和交换的量子电路。我们显示了量子传送和SAP之间量子电路的相似性。在本说明中,我们首先讨论量子计算机中的基本电路,特别是各种等效电路。