过去几十年来,纳米颗粒(NP)基于脑部的药物输送系统取得了巨大进展,而鉴于大多数人在交付过程中丢失了大多数,但其治疗潜力尚未得到充分利用。促进大脑药物输送系统的理性设计需要对整个交付过程以及它们可能遇到的问题有深入的了解。Herein, this review first analyzes the typical delivery process of a systemically administrated NPs-based brain-targeting drug delivery system and proposes a six-step CRITID delivery cascade: circulation in systemic blood, recognizing receptor on blood-brain barrier (BBB), intracellular transport, diseased cell targeting after entering into parenchyma, internalization by diseased cells, and finally intracellular drug release.通过将整个交付过程分为六个步骤,本综述旨在深入了解可能限制涉及大脑靶向药物输送系统的交付效率的问题,以及可以保证每一步最小损失的特定要求。当前开发的用于解决这些问题的故障排除的策略将进行审查,并突出显示一些满足这些要求的最先进的设计功能。危险级别的级联级联可以用作设计更有效和特定的脑部靶向药物输送系统的指南。
目前认为,心肌损伤可能是这些患者心律失常风险增强的主要原因。1 许多个体,尤其是重症患者都出现了心肌细胞损伤,其表现为肌钙蛋白水平升高。因此,据报道,肌钙蛋白 T 水平升高的患者室性心动过速/室性颤动的发生率更高。1 虽然心肌受累的机制仍在研究中,但可能包括直接的病毒感染、缺氧诱导的细胞凋亡和细胞因子风暴相关的细胞损伤(图)。1 然而,有证据表明,在重症监护病房患者中,尽管心律失常的发生率很高(约 50% 的病例),但只有一半出现急性心脏损伤(肌钙蛋白 I 水平中位数在正常范围内),这表明除心肌损伤外,其他因素也会导致 COVID-19 的心律失常风险增加。在这方面,人们越来越多地认识到药物治疗在增强对 QT 相关危及生命的室性心律失常,特别是尖端扭转型心动过速 (TdP) 的易感性方面的潜在作用。1 事实上,一些用于抵抗病毒入侵和复制的标明外用药可能会促进校正 QT 间期 (QTc) 延长。例如氯喹/羟氯喹,一种通过增加病毒/细胞融合所需的内体 pH 值来阻止感染的抗疟药,以及洛匹那韦/利托那韦,一种干扰病毒 RNA 复制的蛋白酶抑制剂。值得注意的是,在这两种情况下,对心室复极的影响都是直接的,通过抑制 hERG-K + 通道,也通过增加其他同时延长 QT 的药物的循环水平而间接产生。 1 事实上,氯喹和羟氯喹会抑制 CYP2D6(细胞色素 P450 2D6),该酶能代谢多种抗精神病药、抗抑郁药和抗组胺药,
右心室和肺循环的主要目的是进行气体交换。由于气体交换发生在薄而高度渗透的肺泡膜中,因此肺压必须保持较低水平以避免肺水肿;由于右心室和肺与左心室和体循环串联,因此整个心脏输出量必须通过肺部。这种低压、高容量系统对右心室的要求与体循环对左心室的要求截然不同。此外,右心室和肺循环必须缓冲因呼吸、位置变化和左心室心输出量变化而导致的血容量和流量的动态变化。满足这些相互冲突的需求所需的优化导致补偿增加的后负荷或压力的能力下降。不幸的是,大量病理过程可能导致急性或慢性后负荷压力增加。随着后负荷压力的增加,可能会出现右心衰竭,并可能突然出现血流动力学不稳定和死亡。已发现多种生化途径可能参与对过大压力负荷的适应或适应不良。
允许将氧气分散到血液中,而无需泡沫。在1951年,丹尼斯(Dennis)1 N,同事使用旋转的屏幕磁盘氧合修复心房间隔缺陷,这是第一个总心肺旁路(图8),但病人死了。gib-bon 2 0在19 53中进行了第一个成功的总心肺旁路,以修复心房间隔缺陷。氧合剂由塑料构造中的垂直染色器筛网组成(图9)。对该系统的修改导致现代的Mayo-Gibbon氧合剂。Dewall21 and Associates在1955年描述的著名的螺旋储层气泡氧合器回答了对实用的氧合剂的需求。设计和操作的模拟性使其广泛接受(图10)。重力返回的静脉血液恢复到疗养者,从中泵送血液以通过垂直的氧气柱上升,以在进入柱的大气泡的表面上拍摄,进入该柱。原始氧合剂已被修改为由含有