对超快自旋动力学的理解对于将来的超快和能量效率磁性记忆和存储应用至关重要。我们研究了COFEB/MGO/COFEB磁性隧道连接点(MTJ)的超快激光诱导的磁光反应,当时用短激光脉冲令人兴奋,这是磁性配置和泵送的函数。MTJ的超快速磁化在0.33–0.37 PS的时间尺度上迅速下降,这是由电子旋转散射和旋转转运相互驱动的。随后,通过电子– Phonon和Spin -Phonon相互作用分别以1.5-2.0和5.0–15.0 ps的时间尺度转移到电子和自旋储层的能量转移到晶格中。我们的结果表明,COFEB/MGO/COFEB的界面自旋方向可以调节自旋和声子之间的相互作用常数。这些发现提供了对MTJ接口在自旋动力学中的作用的洞察力,这将有助于Opto-Spintronic Tunnel Junction Junction堆栈设计和应用。
自旋轨道扭矩对于控制自旋装置至关重要。旋转厅效应在内存和振荡器设备中发现了广泛的应用,从而实现了磁化开关和自动振荡。然而,自旋霍尔效应的有效性受设备的几何特性的约束,这限制了旋转电流的流量和极化方向。另一种自旋轨道耦合现象的自旋交换效果通过提高灵活性在任何所需方向上产生旋转电流来克服这些约束。这是通过将初始旋转电流的方向和极化转换为独特的二次自旋电流来实现的[1]。通过自旋交换生成平面外旋转的最新成功证明了其在垂直磁化系统中的旋转器设备中的有效性[2]。自旋交换不仅可以在具有特定带结构的材料中,而且还可以发生在中心对称材料(例如3D过渡铁磁铁)中,该材料很容易沿磁化方向产生自旋极性电流,使其非常适合自旋交换来源[3]。然而,尚未尝试使用混合电信号阻碍的3D铁磁性交换的定量分析。铁磁层的共振向相邻层提供了极化的旋转,作为自旋交换的主要自旋。具有不同有效磁化的磁性层的共振提供了不同的共振场,从而允许信号分化,如图1(b)所示。通过反旋转大厅效应(ISHE)和异常霍尔效应(AHE)或自旋交换效果,将扩散到其他层的泵送自旋电流转化为具有不同角度依赖性的电荷电流。如图1(c)所示,与PT/CO中的ISHE主导信号不同,PT/CO中的信号在COFEB/TA/COFEB中具有独特的角度依赖性,包括自旋交换效应,验证了这种现象。COFEB/TA/COFEB表现出旋转交换效果,即在Ishe&Ahe中观察到的1/3。本研究中的定量分析提供了每种自旋交换源材料的贡献。自旋交换效果的利用将导致旋转器设备的能源效率和无场操作。
(10 -5 ) 钴铁硼 10 50 5 6.67 14.60 175.01 55.64 77.63 3.68 钴铁硼 5 50 5 8.46 29.48 384.88 64.82 135.41 3.22 钴铁硼 5 50 10 4.56 17.88 108.74 75.02 27.16 1.31 钴铁硼 * 5 50 10 4.65 14.77 78.57 87.39 9.91 0.53 钴铁硼 5 100 10 8.95 15.40 197.38 69.82 59.57 1.43 镍铁 10 50 5 8.72 2.66 10.78 215.17 -12.42 -1.95 镍铁 2.5 50 5 9.15 35.98 148.76 221.25 -180.37 -3.91 镍铁 2.5 50 10 4.58 27.30 54.35 230.17 -70.75 -3.02
摘要 利用 H 2 /NH 3 的反应离子束蚀刻 (RIBE) 系统蚀刻磁隧道结 (MTJ) 材料,例如 CoFeB、Co、Pt、MgO,以及硬掩模材料,例如 W 和 TiN。与使用纯 H 2(无蚀刻)和 NH 3 的蚀刻相比,使用 H 2 和 NH 3 的混合气体,尤其是 H 2 /NH 3 (2:1) 比例,可以观察到 MTJ 相关材料的更高蚀刻速率和相对于掩模材料的更高蚀刻选择性 (>30)。此外,在蚀刻的磁性材料表面上没有观察到明显的化学和物理损伤,对于通过 H 2 /NH 3 (2:1) 离子束蚀刻的 CoPt 和 MTJ 纳米级图案,可以观察到高度各向异性的蚀刻轮廓 >83 ◦,没有侧壁再沉积。与 H 2 离子束或 NH 3 离子束相比,H 2 /NH 3 (2:1) 离子束对磁性材料(如 CoFeB)的蚀刻速率更高,这被认为与挥发性金属氢化物(MH,M = Co、Fe 等)的形成有关,这是通过暴露于 NH 3 离子束中在 CoFeB 表面形成的 M-NH x(x = 1 ∼ 3)的还原形成的。人们认为,H 2 /NH 3 RIBE 是一种适用于蚀刻下一代纳米级自旋转移力矩磁性随机存取存储器 (STT-MRAM) 设备的 MTJ 材料的技术。
• 通过溅射或 MBE 在 bcc CoFe 或 Fe 磁性电极上,或在非晶态 CoFeB 电极上生长,然后进行退火以重结晶电极,从而形成质地非常好的 MgO 屏障。
自旋转移扭矩磁盘磁盘随机访问存储器(STT-MRAM)已成为一种有希望的非挥发记忆技术,与闪存相比,可提供可扩展性,高耐力和更快的操作[1,2]。它与SRAM竞争的能力有可能彻底改变未来信息存储。MRAM电池的核心是由COFEB磁参考层(RL),MGO隧道屏障(TB)和COFEB游离磁性层(FL)组成的磁性隧道连接(MTJ)。具有垂直磁化的FL和RL(PMTJ)的设备可实现大量的足迹,并为高密度MRAM溶液打开了路径。一直在不断努力提高STT-MRAM设备的切换性能,目的是实现子纳秒(子NS)切换时间。虽然自旋 - 轨道扭矩(SOT)设备显示了子NS开关性能,但与STT设备的两端结构相比,从技术的角度来看,它们的三端设备结构并不理想[3]。在PMTJ设备中掺入钼(MO)已显示出胜过常规TA的PMTJ,而TA则用垂直磁各向异性(PMA),热耐受性和开关性能作为COFEB电极的缓冲/帽/帽[4]。双磁隧道连接(DMTJ),具有额外RL和第二个TB的MTJ,已被研究为常规MTJ设备的有效替代方案,最多两倍的开关效率提高了开关效率[5,6]。但是,结构导致TMR值较低,到期
a 艾克斯马赛大学,CNRS,IM2NP,13451 马赛,法国。b SPINTEC,格勒诺布尔阿尔卑斯大学,CNRS,CEA-SPINTEC,CEA,38000 格勒诺布尔,法国。摘要本文首次在读写操作过程中实时实验研究了 1064nm 激光攻击对 STT-MRAM 单元的影响,以了解传感电路在剧烈温度变化下的行为。技术设计必须考虑到这一点。我们重点介绍了激光发射过程中的读取电流变化,这可能会影响传感电路。我们测量了两种状态之间的切换概率以及照射时间、激光功率和单元尺寸的影响。我们将结果与宽温度范围内的电气特性相关联,表明攻击会以热方式影响 STT-MRAM 行为。总之,可以采取适当的对策。 1. 简介 一种很有前途的非易失性存储器,称为自旋转移力矩磁性随机存取存储器 (STT-MRAM),它将快速写入操作与高密度和显着的耐久性(高达 1013 次循环)相结合 [1,2]。磁隧道结 (MTJ) 由 CoFeB/MgO/CoFeB 堆栈组成,其中 MgO 层用作隧道阻挡层。通过强制自旋极化电流通过设备,可以将单元从反平行 (AP) 状态编程为平行 (P) 状态和反之亦然。自旋电流的横向分量被自由层吸收,导致 CoFeB 铁磁材料磁化发生扭矩诱导反转,即自旋转移力矩 (STT) 效应 [3,4],详见 [5]。磁化方向是 MTJ 中数据编码的形式,其读/写延迟由反转的随机性、器件尺寸和流过各层的电流控制 [6]。MTJ 的一个重要特性是隧道磁阻比 (TMR),定义为 (R AP - RP )/RP ,其中 R AP 和 RP 分别是 AP 和 P 状态的电阻 [7]。本研究的目的是调查红外激光攻击如何影响读取和编程阶段的 STT-MRAM 行为。此外,我们还旨在了解激光攻击的物理贡献,这可能是
我们提出了一种灵活,有效的方法,可以通过在三维框架中耦合电荷,自旋和磁化动力学来建模现代SOT-MRAM细胞中的磁化动力学。我们扩展了现有文献,以获得为Rashba-Edelstein效应建模的旋转电流边界条件。我们计算起源于自旋大厅和Rashba-Edelstein效应的自旋 - 轨道扭矩,并表明我们的模型可以重现IR/COFEB双层结构中自旋扭矩的厚度依赖性的实验结果。此外,我们通过模拟无野外SOT-MRAM细胞中的磁化逆转来验证我们的方法,并表明,随着界面dzyaloshinskii – Moriya相互作用,我们获得了与先前报道的实验结果相似的域壁运动。
我们已经研究了带有垂直磁各向异性的w/cofeb/mgo大厅杆中的自旋 - 轨道扭矩驱动的磁化切换。通过掩模的离子辐照已用于在大厅交叉处局部减少局部有效的垂直方向异性。异常的大厅效应测量与KERR显微镜相结合表明,开关过程由辐照区域中的域壁(DW)成核支配,然后在当前密度低至0.8 mA/cm 2的快速域传播,辅助平面磁性磁力纤维。多亏了DW在辐照区和非辐照区域之间的过渡时实施的强钉,引起了中间大厅的电阻状态,这通过有限元模拟进一步验证。使用He h He him hion辐照控制电气电阻的这种方法在实现神经形态和Memristor设备方面具有巨大的潜力。
在图案化的周期性周期性纳米线上大大增强了Faraday旋转,在二晶型铁石榴石膜上[10]。大多数表面等离子体的研究都集中在金属等贵金属上。但是,这些金属必须与光学活性材料结合使用,以提供血浆的主动控制。特别是,可以用应用于磁性金属杂种系统的磁场来控制磁质量[11,12]。磁光kerr效应(moke)将线性极性光转换为Mo材料中的椭圆极化光。最近,Moke已用于检测磁性纤维中的SOC相关扭矩,例如通过电子旋转角动量和光线之间的相互作用,例如绝缘Yttrium-Iron Garnet(YIG)和金属COFEB以及重金属PT异质结构[13,14]。YIG中的摩克很小,对于近红外波长。用二晶体或稀土元素代替Yttrium可以增强摩克,而磁矩只有很小的变化[15-18]。双掺杂的YIG中的大Mo效应是由原子内轨道偶极子偶极转变在CE的4F和5D状态之间或Inter- inter-