摘要:半导体纳米晶体中的载体旋转是量子信息处理的有前途的候选者。使用时间分辨的法拉第旋转和光致发光光谱的组合,我们证明了胶体CSPBBR 3纳米晶体中的光学自旋极化和相干自旋进液,这些纳米晶体一直持续到室温。通过抑制具有少量施加的磁场的不均匀性高纤维的影响,我们证明了接近纳米晶光发光生命周期的不均匀孔横向旋转旋转时间(T 2 *),从而几乎所有发射的光子都来自colent colehent colent colent colent spins spins spins spins。热激活的LO声子在升高温度下驱动额外的自旋去向,但在室温下仍观察到连贯的自旋进动。这些数据揭示了纳米晶和散装CSPBBR 3中的自旋之间的几个主要区别,并为在基于自旋的量子技术中使用金属 - 甲基钙钛矿纳米晶体打开了门。关键字:钙钛矿纳米晶体,旋转dephasing,t 2 *,时间分辨的法拉第旋转,旋转式,量子信息
摘要:我们提出了一个具有连贯状态的一维双向连续变量量子键分布协议,在该协议中,发件人调节了相干状态的单个正交,而不是两个二次化,以简化双向系统的结构。安全分析是通过一般攻击策略(称为两模式攻击)进行的,这有助于减少分析中的限制。在所有可访问的两模式攻击下以固定距离的距离进行了协议的性能。此外,从中获得了两种典型的两模式攻击策略,这是一模式攻击策略和最佳的两模式攻击策略。之间,单模式攻击是两种模式攻击的最简单形式,而最佳的两模式攻击是最复杂的攻击。模拟显示,尽管简化了系统,但具有一维调制的双向协议的性能仍然可与具有高斯调制的对应物相当,即使在Eve的能力最大化时,甚至针对最佳的两模式攻击也是如此。因此,提出的协议简化了双向系统,同时保证其性能在一定程度上。尤其是在传输距离短且高度噪声的实用系统中,该协议具有良好的应用前景。
相比之下,CPA的量子状态(稀薄的吸收剂都被量子光相干地照亮)缺乏这种解释的清晰度。CPA过程的结果在很大程度上取决于光的量子状态。例如,单个光子状态的总吸收和总传播状态之间的“经典”调制[10,11],而概率零或两光子吸收可能发生在两个光子状态[12-14] [12-14]。开发了量子光的CPA的理论模型[15-17]描述了量化行进波的问题,图。1(a),其中未考虑吸收剂的亚波长厚度。此外,根据所考虑的量子状态,需要进行骨气[15]或fermionic [13]第二量化形式主义。尽管缺乏对基本过程的清晰图片,但CPA的量子制度对于量子光学和量子信息的应用还是很大的兴趣。CPA为量子状态控制提供了一种强大的方法,包括量子状态过滤[16-18]和操纵量子光相关性[12-15,19]。最近,提出了量子光的分布式CPA的机理,以确定多节点量子网络中的纠缠确定性生成[20]。从基本的角度来看,CPA的量子状态提供了有关量子光吸收过程的新见解,包括局部[10,11,21]和非本地[22]光子吸收控制,概率两光子和确定性的一种光子吸收两个光子状态[12,13] [12,13]。该研究领域的进一步发展需要清楚地解释CPA的量子效应。
相干电子位移是处理量子信息的一种传统策略,因为它能够将原子网络中的不同位置互连。处理的效率依赖于对机制的精确控制,而这种机制尚未建立。在这里,我们从理论上展示了一种新方法,即利用阿秒单周期脉冲,在比电子波包动态扭曲更快的时间尺度上驱动电子位移。这些脉冲的特征依赖于向电子传递巨大的动量,导致其沿单向路径位移。通过揭示编码量子叠加态的位移波包的时空性质,说明了这一场景。我们绘制出相关的相位信息,并从原点远距离检索它。此外,我们表明,将一系列这样的脉冲应用于离子链,能够以阿秒为单位控制电子波包在相邻位置之间来回相干运动的方向性。扩展到双电子自旋态证明了这些脉冲的多功能性。我们的研究结果为使用阿秒单周期脉冲对量子态进行高级控制建立了一条有希望的途径,为超快速处理量子信息和成像铺平了道路。
图 2 (a) 玻璃基板上铋薄膜在 1.08 mJ/cm 2 的通量下的瞬态反射率变化。绿色箭头为眼睛引导,指示随着厚度的减小,下降移至较短的延迟时间,虚线表示 22.6 nm 铋膜的下降在 14.4 ps 处。插图:Bi/玻璃中 CAP 的产生和检测示意图:红色箭头为探测光,紫色箭头为 CAP;探测器记录了从表面反射的探测光束与 CAP 调制探测光束之间的干涉;(b) 第一次下降的出现时间与薄膜厚度的关系(橙色线是眼睛引导的直线)。
Josephson隧道连接是几乎所有超导电子电路(包括Qubits)的核心。典型地,使用阴影蒸发技术制造了量子位的连接处,以减少超导纤维界面的介电损耗贡献。近年来,亚微米量表重叠连接开始引起人们的注意。与阴影蒙版技术相比,不需要角度依赖性沉积,也不需要独立的桥梁或重叠,这对于晶圆尺度处理而言是显着的局限性。这是以在制造过程中打破真空的成本,但简化了在多层电路中的集成,实现截然不同的连接尺寸,并可以在工业标准的过程中更大规模地制造。在这项工作中,我们证明了减法过程用于制造重叠连接的可行性。在一系列测试接触中,我们发现6个月内平均正常状态阻力的低老化仅为1.6%。我们通过将它们用于超导式的transmon量子位来评估连贯性。在时间域实验中,我们发现,最好的设备的量子寿命和相干时间平均大于20µs。最后,我们讨论了我们技术的潜在改进。这项工作铺平了迈向更标准化的过程,并具有材料和生长过程,这是大规模制造超导量子电路的重要步骤。
摘要 锁模激光器发出的短脉冲可以产生无背景的原子荧光,因为它允许瞬时偶发散射与随后的原子发射在时间上分离。我们利用这一点将光频和电子搁置离子阱量子比特的量子态检测提高了两个数量级以上。然而,对于原子超精细结构上定义的量子比特的直接检测,短脉冲的大带宽大于超精细分裂,并且重复激发不是量子比特状态选择性的。在这里,我们表明,通过将相干控制技术应用于被查询离子的轨道价电子,可以恢复超精细量子比特的投影量子测量所需的状态分辨率。我们展示了电子波包干涉,即使在存在大量背景激光散射的情况下,也可以使用宽带脉冲读出原始量子比特状态。
光子学为探索非经典计算资源提供了一个出色的平台[1],因为纠缠可以通过光学非线性效应方便地产生[2-4],而线性操控协议可在多个自由度上实现[5-7]。人们做出了巨大的努力来产生和操控高维纠缠态,既用于量子力学的检验[8],也用于量子技术的应用[9]。人们致力于增加单个光子上编码的信息量[10],并实现高维通用线性运算,以扩展量子处理的能力,增强量子计算和模拟的多功能性[11]。高维量子编码已在光路域[12]、频域[4]、时间模域[13,14]和横向空间模域[15–17]中得到演示。对于第一个域,Reck等人[5]展示了如何使用由相位调制器和耦合器组成的级联基本块实现任意幺正算子。利用Reck等人的方案,在路径域中报道了维数从6到26的可编程矩阵算子和投影仪[9,12,18,19]。然而,仅实现了6×6的任意变换矩阵,而由于移相器和定向耦合器的排列复杂性不断增加,其他演示都是固定的或部分可调的。在频域,量子
摘要:等离子体产生的亚波长约束和增强电场可实现精确传感和增强光与物质的相互作用。然而,等离子体的高频率和短寿命限制了这项技术的全部潜力。找到替代品并研究其动力学至关重要。在这里,我们提出了一种实验方法,允许在时间域研究表面声子极化子。我们首先为超短脉冲光与极性材料相互作用建立理论框架。然后,我们进行飞秒泵浦探测实验,并展示表面声子极化的产生和时间分辨检测。通过比较实验和模拟,我们显示了明模式和暗模式的存在,质量因子高达 115。然后,我们研究模式相关的衰减和向环境的能量传递。我们的结果为实验探索表面声子极化子的动力学以及相干性在能量传递中的作用提供了一个平台。关键词:表面声子极化子,超快,相干性,亚波长限制