量子计算面临的挑战之一是由于噪声引入的相位随机化导致相干性丧失。对于基于离子阱的量子计算机,相干性受到磁场波动和用于量子比特操作的激光器线宽的限制。本论文致力于通过使用永磁体改善磁场稳定性来增强相干性,并建立一个测试装置来减少光纤激光线宽的加宽。以前使用线圈来产生磁场。它们的稳定性受到电流驱动器噪声的限制。为了提高磁场稳定性,线圈已被永磁体取代。设计了两个固定永磁体的框架,并进行了 3D 打印,然后安装在实验中。安装后,使用 Ramsey 测量法获得 1 / √ e 相干时间 τ sens = (489 ± 21) µ s 和 τ insens = (1540 ± 80) µ s,用于量子比特状态的塞曼子能级之间对磁场的更敏感和更不敏感的跃迁,而使用线圈时,τ sens = (491 ± 25) µ s 和 τ insens = (1254 ± 53) µ s。从这些结果中,我们能够推断出磁场和激光频率波动的均方根 (RMS),无论是在使用线圈还是永磁体时,p
将相干光学跃迁与长寿命自旋量子比特耦合的固态量子发射器对于量子网络至关重要。我们在此报告了金刚石纳米结构中单个锡空位 (SnV) 中心的自旋和光学特性。通过低温磁光和自旋光谱,我们验证了 SnV 的反演对称电子结构,识别了自旋守恒和自旋翻转跃迁,表征了跃迁线宽,测量了电子自旋寿命,并评估了自旋失相时间。我们发现,即使在纳米制造结构中,光学跃迁也与辐射寿命极限一致。自旋寿命受声子限制,指数温度缩放导致 T 1 > 10 毫秒,相干时间 T 2 在冷却至 2.9 K 时达到核自旋浴极限。这些自旋特性超过了其他反演对称色心的自旋特性,而这些色心的类似值需要毫开尔文温度。 SnV 结合了相干光学跃迁和长自旋相干性,无需稀释制冷,是可行且可扩展的量子网络应用的有希望的候选者。
量子力学允许通过光学方法分发本质上安全的加密密钥。双场量子密钥分发是最有希望在长距离光纤上实现的技术,但需要稳定双方通信信道的光长。在基于卷轴光纤的原理验证实验中,这是通过将量子通信与周期性调整帧交织来实现的。在这种方法中,密钥流的较长占空比是以对信道长度的控制较松为代价的,并且在现实世界中使用此技术成功传输密钥仍然是一项重大挑战。利用源自频率计量的干涉测量技术,我们开发了一种同时进行密钥流和信道长度控制的解决方案,并在 206 公里现场部署的光纤上进行了演示,损耗为 65 dB。我们的技术将信道长度变化导致的量子比特误码率降低到 <1%,代表了现实世界量子通信的有效解决方案。
分子过程的相干控制源于通向同一最终状态的多种途径 1、2 之间的干涉,通常是通过激光照射引起的。最近的理论研究表明,类似的过程可以出现在经典力学的某些场景中 3、4,并且这种控制可以在经典极限下持续存在 5。基于非线性响应和通过海森堡表示观察干涉的考虑 6、7 表明,当控制在经典极限下存活时,它之所以如此,是因为对量子动力学有贡献的干涉项是由外部驱动的,即与外部激光场的振幅成比例。从这个意义上说,量子干涉贡献在质上与双缝实验等中的贡献不同。负责量子控制的量子干涉现象存在非零经典极限的可能性很大,需要仔细探索。在本文中,我们通过计算研究了在预计可通过实验实现的拟议光晶格场景中接近经典控制极限的方法。该设计允许人们探索控制作为有效的 → 0 以及退相干对量子控制的比较影响。下面的计算结果还强调了经典规则动力学与混沌动力学领域的量子响应差异。作为一种特殊的控制场景,我们关注对称性破坏,其中空间对称系统被具有频率分量和 2 的激光场照射。这样的场产生相位可控的净偶极子或电流,而不会在电位中引入偏置(例如,参见参考文献 1、3、5、8-10)。我们提出的系统是一个移动或振动的一维光学晶格 11,12,如下图所示,通过规范变换,可以将其视为与空间均匀电场相互作用的静止空间对称周期势。我们考虑了 → 0 极限以及退相干的影响,后者
摘要:本文研究了光子加三重相干态(PATCS)的高阶非经典特性与纠缠特性,采用高阶单模反聚束准则来衡量光子加操作的作用,并研究了PATCS中高阶三模和压缩与纠缠特性的一般检测准则。结果表明:对三重相干态进行光子加操作可以增强高阶单模反聚束和高阶三模和压缩的程度,增大光子加三重相干态的高阶三模纠缠因子值。此外,随着高阶值的增加,单模反聚束和纠缠特性的表现更加明显。
在本文中,我们在超薄的磁合金和多层上,在不透明的SI底物上应用桌面,超快,高谐波生成(HHG)来测量元素特异性铁磁共振(FMR)。我们证明了连续的波带宽高达62 GHz,并承诺将其扩展到100 GHz或更高。该实验室规模的仪器使用超快,极端粉状物(EUV)的光检测FMR,光子能量跨越了最相关的杂志元素的M-边缘。射频频率梳子发生器用于产生微波激发,该微波激发本质上同步与EUV脉冲,其正时抖动为1.1 ps或更高。我们应用该系统来测量多层系统以及Ni-FE和Co-FE合金中的动力学。由于该仪器以反射模式运行,因此它是测量和成像磁态动力学和主动设备在桌面上任意基板上的自旋传输的里程碑。较高的带宽还可以测量具有高磁各向异性的材料,以及纳米结构或纳米电视中的铁磁体,抗铁磁铁和短波长(高波形)自旋波。此外,EUV的相干性和短波长将能够使用动态纳米级无透镜成像技术(例如相干差异成像,Ptychography和全息图)扩展这些研究。
摘要:在这项工作中,我们引入了一种新颖的连贯的完美吸收器,通过强调通过使用不对称石墨烯元素的宽带宽度,厚度减小,可调性和直接设计来突出其新颖性。此设计均包含在硅基板两侧排列的正方形和圆形石墨烯贴片。具有优化的结构设计,该吸收器始终在1.65至4.49 THz的频率范围内捕获超过90%的传入波,而石墨烯费米水平为0.8 eV,整个设备的测量仅为1.5 um。这使我们的吸收器比以前的设计更有效和紧凑。通过将元表面的几何设计与石墨烯费米水平相结合,可以显着增强吸收器的有效性。可以预料,这种超薄的宽带连贯的完美吸收装置将在出现的芯片上通信技术中起着至关重要的作用,包括光调节器,光电探测器等。
量子力学允许通过光学方法分发本质上安全的加密密钥。双场量子密钥分发是实现长距离光纤网络的最有前途的技术之一,但需要稳定双方通信信道的光长。在基于卷轴光纤的原理验证实验中,这是通过将量子通信与周期性稳定帧交错来实现的。在这种方法中,密钥流的较长占空比是以对信道长度的控制较松为代价的,并且在现实世界中使用此技术成功传输密钥仍然是一项重大挑战。利用源自频率计量的干涉测量技术,我们开发了一种同时进行密钥流和信道长度控制的解决方案,并在 206 公里现场部署的光纤上进行了演示,损耗为 65 dB。我们的技术将信道长度变化导致的量子比特误码率降低到 <1%,代表了现实世界量子通信的有效解决方案。
摘要:近年来,光子计算的显着进步突显了需要光子记忆,尤其是高速和连贯的随机记忆。应对实施光子记忆的持续挑战才能充分利用光子计算的潜力。基于刺激的布里鲁因散射的光子传声记忆是一种可能的解决方案,因为它一致地将光学信息传递到高速下的声波中。这样的光声内存具有巨大的潜力,因为它满足了高性能光随机记忆的关键要求,因为它的相干性,芯片兼容性,频率选择性和高带宽。但是,由于声波的纳秒衰减,到目前为止,迄今为止的存储时间仅限于几纳秒。在这项工作中,我们通过实验增强光声内存的固有存储时间超过1个数量级,并在存储时间为123 ns后连贯地检索光学信息。这是通过在4.2 K处高度非线性纤维中使用光声记忆来实现的,从而使内在的声子寿命增加了6倍。我们通过使用直接和双同性恋检测方案测量初始和读数光学数据脉冲来证明我们的方案能力。最后,我们分析了4.2 - 20 K范围内不同低温温度下光声记忆的动力学,并将发现与连续波测量值进行了比较。关键字:布里渊散射,光子神经形态计算,光学记忆,非线性光学,低温■简介延长的存储时间不仅对光子计算,而且对需要长声子寿命的Brillouin应用程序,例如光声过滤器,真实时延迟网络和微波光子学中的合成器。
摘要:电子系统与晶格振动的耦合及其时间有关的控制和检测提供了对半导体非平衡物理学的独特见解。在这里,我们研究了使用宽带光泵 - 探针显微镜封装的半导体单层2 h -mote 2的超快瞬态响应。低于40 fs泵脉冲在A'和B'激子共振的光谱区域中极度强烈且长寿的连贯振荡,这是由于最大瞬态信号的约20%,这是由于平面外A 1G语音的位移激发。从头算计算揭示了由平面外拉伸和晶体晶格的压缩诱导的单层MOTE 2的光吸收的重排,与A 1G型振动一致。我们的结果强调了单层TMD对小结构修饰的光学特性的极端敏感性及其用光操纵。关键字:连贯的声子,激子,超快光谱,过渡金属二分法,二维材料,单层,Mote 2 E