能源消耗是蒸气压缩制冷系统中的主要问题。在许多商业和住宅应用中,冷却系统现在消耗大量能源。因此,立即需要提高冷却系统的能源效率。这项研究通过将纳米颗粒溶解在聚熟料(POE)油中,创建了三个不同的石墨烯 - 氧化物纳米化剂样品,浓度为0.1、0.3和0.5 g/L。然后,分别使用30、40和50 g R600A(异丁烷)制冷剂的纳米化浓度进行测试。结局与聚滤器(POE)油对比,该油作用是主要的润滑物质。根据结果,在0.3 g/l的0.3 g/l石墨烯 - 氧化物纳米化剂中的40克质量电荷表现出最大的性能,最大制冷效应为0.197719 kW,最高的性能系数(COP)为1.72,系统最低的功率为0.115 kW。因此,纯聚酯(POE)油可以用蒸气压缩系统中的石墨烯 - 氧化纳米化剂代替。
Refka Ghodhbani 沙特阿拉伯北部边境大学计算机科学系、计算机与信息技术学院 | 突尼斯莫纳斯提尔大学科学学院电子与微电子实验室 refka.ghodhbani@nbu.edu.sa(通讯作者) Taoufik Saidani 沙特阿拉伯北部边境大学计算机科学系、计算机与信息技术学院 taoufik.saidan@nbu.edu.sa Layla Horrigue 突尼斯莫纳斯提尔大学科学学院电子与微电子实验室 layla.k-12@hotmail.com Asaad M. Algarni 沙特阿拉伯北部边境大学计算机科学系、计算机与信息技术学院 asaad.algarni@nbu.edu.sa Muteb Alshammari 沙特阿拉伯北部边境大学计算机与信息技术学院信息技术系 muteb.alshammari@nbu.edu.sa
摘要 - 由于近年来的成就,量词计算机正成为现实。当今可用的量子计算机提供数百个Qubits,但在累积错误和量子状态衰减之前可以执行的操作数量仍然有限。关于误差积累,非本地操作(例如CX或CZ)是主要贡献者。减少所需非本地操作数量的一种有希望的解决方案是通过利用量子系统的固有高维功能来更有效地利用量子硬件。在一个称为电路压缩的过程中,量子位之间的非本地操作映射到Qudits的本地操作,即高维系统。在这项工作中,我们提出了一种启用量子电路压缩的策略,其目的是将给定电路中的Qubits映射到目标硬件的混合维数。此外,在引入捕获量子操作本质的新表示之前,我们讨论了电路压缩的原理以及Qubits和Qudits的物理结构,影响了图的量子状态的不同逻辑水平。基于此,我们提出了一种自动化方法,用于将任意门设置的Qubit电路映射到混合量子量子系统中,从而降低了非本地操作的数量。经验评估证实了拟议方法的有效性,将几乎一半的病例降低了多达50%的非本地操作。索引术语 - Quantum Computing,电路压缩,QUDITS最后,相应的源代码可在github.com/cda-tdum/qudit-compression上自由获得。
摘要 - 途径高密度和高通道计数神经接口,能够同时记录成千上万的神经元的同时记录,将为学习,恢复和增强神经功能提供一个门户。但是,在完全植入的设备的比特率极限和功率预算内建立此类技术是具有挑战性的。使用在类似物到数字界面处使用有损耗的压缩,有线或压缩读数架构解决了高通道计数神经界面的数据洪水挑战。在本文中,我们评估有线或对神经工程至关重要的几个步骤的适用性,包括尖峰检测,尖峰分配和波形估计。对于有线或有线信号的各种接线配置以及基础信号质量的假设,我们表征了压缩比和特定任务信号保真度指标之间的权衡。使用来自猕猴视网膜中的18个大尺度微电极阵列记录的数据,我们发现,对于7-10的事件SNR,有线或正确检测并分配了至少80%的尖峰,至少具有50倍压缩。有线或方法还鲁棒地编码动作电势波形信息,从而实现了下游处理,例如细胞类型分类。最后,我们表明,通过将基于LZ77的无损耗压缩机(GZIP)应用于有线或体系结构的输出,可以在基线记录中实现1000倍压缩。
摘要:背景:生物信号是智能医疗系统诊断和治疗常见疾病所需的基本数据。然而,医疗系统需要处理和分析的信号量非常大。处理如此大量的数据会带来很多困难,例如需要很高的存储和传输能力。此外,在应用压缩时,保留输入信号中最有用的临床信息至关重要。方法:本文提出了一种用于 IoMT 应用的生物信号高效压缩算法。该算法使用基于块的 HWT 提取输入信号的特征,然后使用新颖的 COVIDOA 选择最重要的特征进行重建。结果:我们使用两个不同的公共数据集进行评估:MIT-BIH 心律失常和 EEG 运动/意象,分别用于 ECG 和 EEG 信号。所提算法的 CR、PRD、NCC 和 QS 平均值分别为 ECG 信号的 18.06、0.2470、0.9467 和 85.366,EEG 信号的 12.6668、0.4014、0.9187 和 32.4809。此外,所提算法在处理时间方面比其他现有技术更高效。结论:实验表明,与现有技术相比,所提方法成功实现了高 CR,同时保持了出色的信号重建水平,并且处理时间更短。
- 奥地利航天局(ASA)/奥地利。- 比利时科学政策办公室(BELSPO)/比利时。- 机器建筑中央研究所(TSNIIMASH)/俄罗斯联合会。- 北京跟踪与电信技术研究所(CLTC/BITTT)/中国/中国卫星卫星发射和跟踪控制将军/中国。- 中国科学院(CAS)/中国。- 中国太空技术学院(CAST)/中国。- 英联邦科学与工业研究组织(CSIRO)/澳大利亚。- 丹麦国家航天中心(DNSC)/丹麦。- deciênciae tecnologia Aerospacial(DCTA)/巴西。- 电子和电信研究所(ETRI)/韩国。- 欧洲剥削气象卫星(Eumetsat)/欧洲的组织。- 欧洲电信卫星组织(Eutelsat)/欧洲。- 地理信息和太空技术发展局(GISTDA)/泰国。- 希腊国家太空委员会(HNSC)/希腊。- 希腊航天局(HSA)/希腊。- 印度太空研究组织(ISRO)/印度。- 太空研究所(IKI)/俄罗斯联合会。- 韩国航空航天研究所(KARI)/韩国。- 通信部(MOC)/以色列。- 穆罕默德垃圾箱拉希德航天中心(MBRSC)/阿拉伯联合酋长国。- 国家信息与通信技术研究所(NICT)/日本。- 国家海洋与大气管理局(NOAA)/美国。- 哈萨克斯坦共和国国家航天局(NSARK)/哈萨克斯坦。- 国家太空组织(NSPO)/中国台北。- 海军太空技术中心(NCST)/美国。- 荷兰太空办公室(NSO)/荷兰。- 粒子与核物理研究所(KFKI)/匈牙利。- 土耳其科学技术研究委员会(Tubitak)/土耳其。- 南非国家航天局(SANSA)/南非共和国。- 太空和高中气氛研究委员会(Suparco)/巴基斯坦。- 瑞典太空公司(SSC)/瑞典。- 瑞士太空办公室(SSO)/瑞士。- 美国地质调查局(USGS)/美国。
我们考虑在具有挑战性的一声/训练后设置中,深度神经网络(DNN)的模型压缩问题,在该设置中,我们将获得一个准确的训练有素的模型,并且必须仅基于少量校准输入数据而无需进行任何重新训练。鉴于新兴软件和硬件支持,该问题已变得很流行,以通过加速进行修剪和/或量化来执行模型,并且已经针对两种压缩方法独立提出了良好的表现解决方案。在本文中,我们引入了一个新的压缩框架,该框架涵盖了在统一的环境中涵盖重量修剪和量化的,这是时间和空间效果,并且在现有后训练方法的实际性能上大大提高。在技术层面上,我们的方法基于[Lecun,Denker和Solla,1990]的经典最佳脑外科医生(OBS)框架的精确而有效的实现,以涵盖现代DNNS规模的体重量化。从实际的角度来看,我们的实验结果表明,它可以在现有训练后方法的压缩准确性权衡方面显着改善,并且它可以在培训后环境中启用修剪和量化的准确复合应用。
本文由 TigerPrints 汽车工程部门免费提供给您,供您免费访问。它已被 TigerPrints 授权管理员接受并纳入出版物。如需更多信息,请联系 kokeefe@clemson.edu。
摘要 — 物联网 (IoT) 支持的网络边缘人工智能 (AI) 的最新进展通过实现低延迟和计算效率,在智能农业、智能医院和智能工厂等多个应用中实现了边缘智能。然而,在资源受限的边缘设备上部署 VGG-16 和 ResNets 等最先进的卷积神经网络 (CNN) 实际上是不可行的,因为它们有大量的参数和浮点运算 (FLOP)。因此,作为一种模型压缩的网络修剪概念正在引起人们的关注,以加速低功耗设备上的 CNN。最先进的修剪方法,无论是结构化的还是非结构化的,都没有考虑卷积层所表现出的复杂性的不同潜在性质,而是遵循训练-修剪-再训练流程,这会导致额外的计算开销。在这项工作中,我们通过利用 CNN 固有的层级复杂性,提出了一种新颖且计算高效的修剪流程。与典型方法不同,我们提出的复杂性驱动算法根据其对整体网络复杂性的贡献选择特定层进行过滤器修剪。我们遵循直接训练修剪模型的过程,避免计算复杂的排名和微调步骤。此外,我们定义了三种修剪模式,即参数感知 (PA)、FLOP 感知 (FA) 和内存感知 (MA),以引入 CNN 的多功能压缩。我们的结果表明,我们的方法在准确性和加速方面具有竞争力。最后,我们提出了不同资源和准确性之间的权衡,这有助于开发人员在资源受限的物联网环境中做出正确的决策。
Burckhardt Compression 的 Laby®-GI 压缩机系统在液化天然气 (LNG) 运输船的燃料供应中发挥着重要作用。在运输过程中,液化气体会升温,导致少量蒸发,形成蒸发气体,然后重新液化并送回油箱或用作运输船发动机的燃料。液化系统和柴油发动机都需要高达 300 bar 的压力。这就是为什么 Burckhardt Compression 为 LNG 应用开发了特定的解决方案,这些解决方案可在低温高压下压缩气体,并满足公海使用的严格要求。Burckhardt Compression 系统的独特卖点是密封的曲轴箱,可防止甲烷逸出到大气中。报告期内,已安装的 Laby®- GI 系统首次实现 150 万小时运行时间,体现出其高可靠性。