摘要我们基于随机子空间内的迭代最小化,为基于大规模模型的无衍生衍生型选择引入了一个通用框架。我们为我们的方法提供了概率的最差复杂性分析,特别是我们在实现给定最佳性之前证明了迭代次数的高概率界限。该框架专门针对非线性最小二乘问题,该框架具有基于高斯– Newton方法的基于模型的框架。此方法通过构造本地线性插值模型来近似Jacobian,从而实现可扩展性,并在每个迭代中计算具有用户确定的维度的每个迭代的新步骤。然后,我们描述了该框架的实际实现,我们称之为dfbgn。我们概述了选择插值点和搜索子空间的有效技术,得出的实现了,该实现的每卷线性代数成本(在问题维度为线性),同时还可以通过评估来衡量,同时还可以实现快速客观的降低。广泛的数值结果表明,DFBGN提高了可伸缩性,在大规模的非线性最小二乘问题上产生了强劲的性能。
摘要:人类的情绪随时间而变化,非平稳,性质复杂,是日常生活中人类反应的结果。从一维脑电信号中连续检测人类情绪是一项艰巨的任务。本文提出了一种使用连续小波变换从脑电信号中检测情绪的先进信号处理机制。原始脑电信号的空间和时间分量被转换成二维频谱图,然后进行特征提取。实施混合时空深度神经网络以提取丰富的特征。基于差分的熵特征选择技术根据熵、低信息区域和高信息区域自适应区分特征。使用深度特征包 (BoDF) 创建相似特征的聚类并计算特征词汇以降低特征维数。在 SEED 数据集上进行了广泛的实验,结果表明与最先进的方法相比,所提出的方法具有重要意义。具体来说,所提出的模型在 SJTU SEED 数据集上分别对 SVM、集成、树和 KNN 分类器实现了 96.7%、96.2%、95.8% 和 95.3% 的准确率。
摘要:我们表明,量子极值表面 (QES) 处方的简单应用会导致矛盾的结果,必须在领先阶上进行校正。当存在第二个 QES(领先阶的广义熵严格大于最小 QES)并且两个表面之间存在大量高度不可压缩的体积熵时,就会出现校正。我们将校正的来源追溯到 QES 处方的复制技巧推导中使用的假设失败,并表明更仔细的推导可以正确计算校正。使用一次性量子香农理论(平滑最小和最大熵)的工具,我们将这些结果推广到一组确定 QES 处方是否成立的精炼条件。我们发现了对纠缠楔重构(EWR)所需条件的类似改进,并展示了如何将 EWR 重新解释为一次性量子态合并(使用零位而不是经典位)的任务,重力能够以最佳效率实现这项任务。
在本文中,我们提出了一种用于承载随机分布式能源 (DER) 和可控电池的径向配电网的重新调度方案。在每个重新调度轮次中,所提出的方案都会计算出一个新的调度计划,以修改和扩展现有的调度计划。为此,它使用 CoDistFlow 算法并应用滚动时域控制原理,同时考虑影响调度计划即时更新的硬时计算约束。CoDistFlow 通过基于场景的优化和交流最优功率流的非凸性来处理随机 DER 和产消者不确定性,通过迭代解决适当定义的凸问题直到收敛。我们根据从真实的瑞士电网获得的真实数据进行数值评估。我们表明,使用我们提出的重新调度方案,即使对于小容量的电池,每日调度跟踪误差也可以减少 80% 以上,并且如果重新调度足够频繁,则可以消除它。最后,我们表明,重新调度应在市场允许的范围内尽可能频繁地进行,并且性能会持续提高。
科学文献中已经通过多种技术广泛分析了与效价/唤醒空间的四个象限相对应的情绪状态的识别。然而,这些方法中的大多数都是基于对每个大脑区域的单独评估,而没有考虑不同区域之间可能存在的相互作用。为了研究这些相互联系,本研究首次计算了称为跨样本熵的功能连接指标,用于分析来自脑电信号的四组情绪的大脑同步。结果报告了中央、顶叶和枕叶区域之间的互连具有很强的同步性,而左额叶和颞叶结构与其他大脑区域之间的相互作用表现出最低的协调性。这些差异对于四组情绪具有统计学意义。所有情绪同时被分类,准确率为 95.43%,超过了以前研究报告的结果。此外,考虑到对应维度的状态,效价和唤醒的高低水平之间的差异也提供了关于不同情绪条件下大脑同步程度的显著发现,以及可能的
建模方法基线沿海地区建模需要了解沿百慕大海岸线作用的沿海过程。该模型的基本起点是构建计算网格,可以在每个仿真时间步骤中从中计算出空间差异。Mike 21使用灵活的计算网络计算波浪和流体动力学。灵活的网格非常适合风暴潮计算,因为它允许建模大型复杂区域,这些区域可能需要同时详细的较小特征的分辨率。使用该岛东部和西部收集的数据建立并校准了该模型。所有用于模型验证的索引被认为可以接受模型性能。这种统计方法验证了光谱波模型,该模型被信任地使用,以对近岸地区日常波浪条件的长期数据库进行现实表示。百慕大的身体状况使得很难获得良好的电流数值校准。通常,电流变化很大,这不容易由数值模型表示。
大部分关于学习人工智能代理符号模型的研究都集中在具有固定模型的代理上。这种假设在代理的能力可能由于学习、适应或其他部署后修改而发生变化的环境中不成立。在这种环境下对代理进行有效评估对于了解人工智能系统的真正能力和确保其安全使用至关重要。在这项工作中,我们提出了一种新颖的方法来差异化评估偏离其先前已知模型的黑盒人工智能代理。作为起点,我们考虑完全可观察和确定性的设置。我们利用对漂移代理当前行为的稀疏观察和对其初始模型的了解来生成主动查询策略,该策略有选择地查询代理并计算其功能的更新模型。实证评估表明,我们的方法比从头开始重新学习代理模型要有效得多。我们还表明,使用我们的方法进行差异评估的成本与代理功能的漂移量成正比。
在有限的预算下,获得固定的分类任务集的高质量结果是众包中的一个关键问题。应探索引入人工智能模型来补充该过程。然而,现有的方法很少直接解决这个问题;现有的方法是在如何使用嘈杂的众包数据训练人工智能模型的背景下提出的。本文提出了一种更直接的方法来解决在有限的预算下引入人工智能来提高人类工作者在固定数量任务中的结果的问题;我们将人工智能模型视为同事,并汇总人类和人工智能工作者的结果。提出的“人机协同 EM”(HAEM)算法扩展了 Dawid-Skene 模型,将 AI 模型视为同事,并明确计算它们的混淆矩阵以得出更高质量的聚合结果。我们进行了大量的实验,并将 HAEM 与两种方法(MBEM 和 Dawid-Skene 模型)进行了比较。我们发现,在大多数情况下,基于 AI 的 HAEM 比 Dawid-Skene 模型表现出更好的性能,并且当 AI 模型性能不佳时,它表现出比 MBEM 更好的性能。
摘要 - 由人脑的工作方式吸引,急剧的高维计算(HDC)正在受到越来越多的关注。HDC是一种基于大脑的工作机理的新兴计算方案,该方案具有深层和抽象的神经活动模式而不是实际数字。与传统的ML算法(例如DNN)相比,HDC以内存为中心,授予其优势,例如相对较小的模型大小,较小的计算成本和一声学习,使其成为低成本计算平台中的有前途的候选人。但是,尚未系统地研究HDC模型的鲁棒性。在本文中,我们通过开发基于黑盒差异测试的框架来系统地揭示HDC模型的意外或不正确行为。我们利用具有与交叉引用甲环类似功能的多个HDC模型,以避免手动检查或标记原始输入。我们还提出了HDXplore中不同的扰动机制。HDXplore自动发现了HDC模型的数千种不正确的角案例行为。我们提出了两种重新训练机制,并使用HDXplore生成的角病例来重新培训HDC模型,我们可以将模型准确性提高高达9%。
流密码[16]是对称密码学中使用的主要加密原始图之一。从历史上看,第一个流量密码是使用“线性”重新组件构建的,在寄存器更新函数(将一个状态发送到下一个状态)中,线性的含义均意味着在下一个状态中发送一个状态),在输出功能中,该功能将按键作为当前状态的函数计算为键流。纯粹的线性寄存器不再使用,因为它们的状态可以从其生成的键流的一小部分中迅速恢复,例如Berlekamp-Massey算法[5,第7章]。由于使用线性结构仅基于几个XOR大门而转化为硬件实现,这对于实际应用是非常可取的,因此大多数Modern crean Stream Cipher都保留了该原始结构的某些部分。在许多相互竞争的流设计中,最近引起了一些兴趣:所谓的非线性过滤器发电机[11]。的确,他们保留了由一个或几个线性寄存器组成的状态的线性更新,但是他们通过其状态的非线性函数输出键流:此功能称为滤波器。这些密码最值得注意的例子是WG-PRNG,它已提交给NIST轻量加密术的NIST竞争[1]。