基因组编辑对于医学和研究目的都具有重要价值。未来的医学应用包括纠正与疾病相关的突变、破坏致病基因,甚至引入新基因(例如,使免疫系统对肿瘤细胞敏感)。研究应用范围从在细胞系或生物体中创建敲除/敲除,和/或引入突变,以研究特定蛋白质、通路或过程的作用,到创建人源化疾病模型。鉴于实际应用的诱人范围,人们在开发基因组编辑方法方面付出了相当大的努力也就不足为奇了。引入基因组变化的传统方式是使用自发重组,要么引入 DNA 突变,要么插入允许进一步使用重组酶(如 Cre)切除基因的序列 [参见 Sauer (2002) 的评论]。随后,锌指核酸酶 (ZFN) 和转录激活因子样效应物核酸酶 (TALEN) 的发现,使得该领域取得了长足的进步,因为它们可以在所需的基因组位置而不是随机的位置引入 DNA 断裂 [参见 Gaj 等人 (2013) 的综述]。尽管如此,基因组编辑领域最大的进步是最近发现的成簇的规律间隔回文重复 (CRISPR) 相关 (Cas) 系统 (Ishino 等人,1987 年;Jansen 等人,2002 年;Jinek 等人,2012 年;Cong 等人,2013 年;Mali 等人,2013 年)。
十年前,人们证明了利用 CRISPR/Cas9 在真核生物中进行基因组编辑 (Cho 等人 2013 年,Cong 等人 2013 年,Feng 等人 2013 年,Jinek 等人 2013 年,Mali 等人 2013 年),现在该技术已经深入科学界,正在进行大量研究 (Wang 和 Doudna 2023)。在植物科学领域,基因组编辑技术不仅用于植物病理生理学研究,还用于实际育种 (Nerkar 等人 2022),一些基因组编辑作物已经商业化并被人类消费 (Waltz 2022)。因此,基因组编辑不再是一项仅由研究人员处理的实验性和不常见的技术,而是一项已进入公众实施阶段的技术。相比之下,这种包括自由改写基因组序列的细微差别的基因组编辑技术真正可以毫不费力地做到的是破坏基因。事实上,大多数使用基因组编辑的研究成果(Matres 等人,2021 年)和正在开发的基因组编辑作物(Nagamine 和 Ezura,2022 年,Xu 等人,2020 年)都是基因破坏的结果。由于可以通过专门破坏对品种特征有不利影响的基因来开发有用的品种,因此基因组编辑技术是一项革命性的技术,可以高效、快速地实现这一目标。另一方面,全基因组关联研究(GWAS)表明,决定数量性状或与遗传变异相关的大多数遗传变异都与基因破坏有关。
1。Beomyeol Jeon,Deffef Deffed 2024年6月。”机器学习系统在受约束的环境中。”第一工作:特斯拉。2。rui Yang,2022年4月辩护,获得了2022年5月的学位。“针对智能家居可靠性的新概念。”第一工作:Google。3。le Xu,辩护,2021年9月,获得了2022年12月的学位。”弹性技术来处理实时数据处理系统中的动态。”第一份就业:Cifellows博士后,德克萨斯大学奥斯汀大学Aditya Akella教授。下一个工作(2024):派。4。cong Xie(与Sanmi Koyejo共同咨询),2021年3月卫冕,获得了2021年5月的学位。”良好的通信 - 良好和安全的分布式机器学习。”第一份就业:美国。5。Faria Kalim,于2020年7月辩护,获得了2020年8月的学位。“满足流处理系统中的服务水平目标。”第一工作:苹果,美国库比蒂诺,美国。6。Shegufta Bakht Ahsan,捍卫于2020年4月,获得了2020年5月的学位。”新的一致性的机器 - 新兴分布式系统。”第一工作:美国奥斯汀亚马逊。7。Mainak Ghosh,2018年6月辩护,获得了2018年学位。“有效的数据重新构造了当今的云系统。”第一工作:Twitter,美国旧金山。8。Shadi Abdollahian Noghabi(与Roy Campbell共同咨询),在2018年5月辩护,获得了DE-
· ET Khabiboulline、JS Sandhu、MU Gambetta、MD Lukin 和 J. Borregaard。具有信息理论安全性的高效量子投票,arXiv:2112.14242。 PRX Quantum 的修订版。 · T. Schuster、B. Kobrin、P. Gau、I. Cong、ET Khabiboulline、NM Linke、MD Lukin、C. Monroe、B. Yoshida 和 NY Yao。通过可穿越虫洞协议中的算子传播实现多体量子隐形传态。物理。 Rev. X,12:031013,2022 年 7 月。 · ET Khabiboulline、J. Borregaard、K. De Greve 和 MD Lukin。量子辅助望远镜阵列。物理。 Rev. A ,100:022316,2019 年 8 月。· ET Khabiboulline、J. Borregaard、K. De Greve 和 MD Lukin。量子网络光学干涉测量法。Phys. Rev. Lett. ,123:070504,2019 年 8 月。· S. Peng、R. Zhang、VH Chen、ET Khabiboulline、P. Braun 和 HA Atwater。具有中红外带隙的三维单螺旋光子晶体。ACS Photonics ,3(6):1131–1137,2016 年。· ET Khabiboulline、CL Steinhardt、JD Silverman、SL Ellison、JT Mendel 和 DR Patton。具有活动星系核的 SDSS 星系中电离条件随环境变化而变化,从成对到成团。《天体物理学杂志》,795(1):62,2014 年。· EJ DiMarco、E. Khabiboulline、DF Orris、MA Tartaglia 和 I. Terechkine。用于质子直线加速器前端高能部分的超导螺线管透镜。IEEE 应用超导学报,23(3):4100905,2013 年 6 月。
失眠是指经常和持续的困难入睡或保持睡眠的特征,尽管睡眠机会和睡眠环境适当(Sutton,2021; Cunnington等,2013)。该疾病的特征主要是在入睡,梦幻,易于觉醒和早期觉醒方面很难,并且经常伴有身体症状(疼痛,神经和麻木)和精神障碍(抑郁,焦虑,焦虑和烦躁)。根据统计数据,超过30%的全球人口经历了一种或多种失眠症状(Madari等,2021),严重影响了患者的生活和工作。失眠的发病机理非常复杂。失眠的发生和发展与个体因素和各种环境因素密切相关。易感因素,诱导因素和维持因素起着非常重要的作用(Proserpio等,2020)。最近,越来越多的证据表明,肠道菌群的变化与宿主健康密切相关(Agus等,2018; Morrison和Preston,2016)。微生物群 - 肠道 - 脑轴已得到确定,与多系统疾病(如神经系统)有关,并参与许多精神疾病的发病机理(Forslund等,2017; Cox and Weiner,2018; Looo等,2020)。肠道菌群称为人体的“第二基因组”(Preethy等,2022)。现在认为细菌与人类细胞的比率接近1:1,其中所含的基因是人类编码基因的100倍。Thaiss等。肠道微生物群已被证明可以通过参与食物消化和分解来调节身体健康和大脑的功能(Burokas等,2017),调节胆汁酸代谢(Burokas等,2017),抵抗病原体,抵抗病原体的入侵(Cheng等,2019),并参与免疫反应,并参与免疫反应(Yang and Cong,Yang,20211)。目前,已经有关于失眠和肠道菌群的报道。(2016)发现,一方面,改变小鼠的睡眠模式可以改变其肠道微生物群的结构和多样性,另一方面,改变了
十年前,人们证明了利用 CRISPR/Cas9 在真核生物中进行基因组编辑 (Cho 等人 2013 年,Cong 等人 2013 年,Feng 等人 2013 年,Jinek 等人 2013 年,Mali 等人 2013 年),现在该技术已经深入科学界,正在进行大量研究 (Wang 和 Doudna 2023 年)。在植物科学领域,基因组编辑技术不仅用于植物病理生理学研究,还用于实际育种 (Nerkar 等人 2022 年),一些基因组编辑作物已经商业化并被人类消费 (Waltz 2022 年)。因此,基因组编辑不再是一项仅由研究人员处理的实验性和不常见的技术,而是一项已进入公众实施阶段的技术。相比之下,这种包括自由改写基因组序列的细微差别的基因组编辑技术真正可以毫不费力地做到的是破坏基因。事实上,大多数使用基因组编辑的研究成果(Matres 等人,2021 年)和正在开发的基因组编辑作物(Nagamine 和 Ezura,2022 年,Xu 等人,2020 年)都是基因破坏的结果。由于可以通过专门破坏对品种特征有不利影响的基因来开发有用的品种,因此基因组编辑技术是一项革命性的技术,可以高效、快速地实现这一目标。另一方面,全基因组关联研究(GWAS)表明,决定数量性状或与遗传变异相关的大多数遗传变异都与基因破坏有关。
∗ We are grateful to Daron Acemoglu, Philippe Aghion, David Autor, Effi Benmelech, Nicholas Bloom, Carter Braxton, Julieta Caunedo, Martin Beraja, Carola Frydman, Tarek Hassan, David Hemous, Anders Humlum, Nir Jaimovich, David Lagakos, Joseba Martinez, Michael Peters, Pascual Restrepo, Jonathan Rothbaum, Miao Ben Zhang, along with seminar participants at University of Amsterdam, BI-SHoF Conference, Boston University, CIREQ Macroeconomics Conference, Columbia GSB, FIRS, Johns Hopkins, HKUST, Labor and Finance Group, NBER (EFG, PRMP, LS, PIE), Macro-Finance Society, MIT Sloan,密歇根州立大学,赖斯大学,罗切斯特大学,伦敦大学学院经济动态学会,伊利诺伊大学乌尔巴纳·尚特阿布恩大学,多伦多大学,多伦多大学,UZH Automation,Tsinghua PBC,WFA,WFA和沃顿大学的UZH工作室,以进行宝贵的讨论和反馈。我们感谢Carter Braxton,Will Cong和Jonathan Rothbaum慷慨地共享代码。Huben Liu提供了出色的研究支持。该论文先前曾以“技术,特定的人力资本和劳动力流离失所:将专利与职业联系起来的证据”标题。The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data used to produce this product (Data Management System (DMS) number: P-7503840, Disclosure Review Board (DRB) approval numbers: CBDRB-FY21-POP001-0176, CBDRB- FY22-SEHSD003-006, CBDRB-FY22-SEHSD003-023,CBDRB-FY22-SEHSD003-028,CBDRB-FY23-SEHSD003-0350,CBDRB-FY23-SEHSD003-0003-064)。
CRISPR/CAS9作为可编程基因组编辑工具的广泛使用受到了脱靶DNA裂解的阻碍(Cong等,2013; Doudna,2020; Fu等,2013; Jinek et al。,2013)。虽然对此类脱离目标编辑事件的分析使CAS9变体的发展具有更大的歧视(Chen等,2017; Kleinstiver等,2016; Slaymaker等,2016),Cas9拒绝或接受Mismismatches的基本分子机制是贫穷的20; Slaymaker和Gaudelli,2021)。在这里,我们使用动力学分析来指导在不匹配监视的不同阶段的CAS9的低温EM结构测定。我们观察到在引导RNA(GRNA)和DNA靶链(TS)之间形成的双链体的独特,未描述的线性构象(TS),该(TS)发生在存在PAM-DISTAL不匹配的情况下,从而阻止Cas9激活。典型的扭结GRNA:TS双链体是CAS9激活的先决条件,充当结构支架,可促进Cas9构象型裂解所需的构象重排。我们观察到,高度耐受性的远端不匹配通过通过RUVC结构域中的柔性环稳定而稳定扭曲的双工构象来实现这种扭结的构象。我们的结果提供了对基本结构机制的分子见解,这些结构机制可能有助于通过CAS9进行离靶机制,并提供了一个分子蓝图,用于设计下一代高富达Cas9变体,可选择性地减少脱离目标DNA裂解,同时又有有效的触发型DNA,同时保留了有效的触发型DNA。
“经济一体化和空间工资差异:差异市场获取是否促使中国不平等?” (与Y. Liang和H. Zhang一起)。中国经济评论54:306-323。2019。“对中国高科技行业的外国直接投资”(与Zixuan Huang)。中国与世界经济,26(5):104–126,2018。“中国国家企业改革:掌握还是释放?” (与Yang Liang)在Wei-Chiao Huang和Huizhong Zhou中),中国对太平洋和世界的影响,W.E。Upjohn就业研究所,密歇根州卡拉马祖,2018年,第83-105页。“智力返回者是土著创新的驱动力:中国光伏产业的证据”(siping Luo和David C. Popp)。世界经济,40(11):2424–2454,2017。早期版本可作为NBER工作文件#19518。“从和离岸到低收入国家的进口竞争:对美国国内制造商的就业和工资的影响”,(与Fariha Kamal一起),《亚洲经济学杂志》,48:100-119,2017。“跨太平洋伙伴关系:来自中国的观点”(与Dimitar Gueorguiev一起),Jagdish N. Bhagwati,Pravin Krishna和Arvind Panagariya(编辑),《世界贸易体系:趋势与挑战》,麻省理工学院出版社,2016年。“通过贸易窗口的观点:朝鲜出口作为经济能力的指标”,(与Jing一起),《世界经济》,38(1):1-20,2015。“主场效应和双边贸易模式:对证据的重新审查”(与Cong Pham Si和Devashish Mitra),《国际经济与金融评论》,30:120:120 - 137,2014。“中国的劳动分配:私有所有权形式和隐性补贴”(与Fariha Kamal),Cesifo经济研究,59(4):731-758,2013。
1成人先天性心脏中心和国家肺动脉高压中心,皇家布隆普顿和哈雷菲尔德医院,伙计和圣托马斯的NHS信托基金会和国家心脏和肺部和肺部,帝国学院,悉尼街,伦敦SW3 6NP,英国; 2克罗地亚里耶卡大学医学院医学康复系; 3意大利卡坦扎罗的“ Magna Graecia”大学医学和外科科学系; 4先天和儿科心脏病学,成人心脏病部门,法国巴黎的Hôpital欧洲乔治·庞皮杜; 5成人先天性心脏病部门,HôpitalEuropéenGeorgesPompidou,法国巴黎巴黎大学的Publique PubliquedesHôpitauxde Paris; 6 Cardiopatiesgongènitesde l'Edelecent i de l'udult(UCCAA); Cibercv,欧洲罕见,低余地或复杂疾病的欧洲参考网络(ERN Guardt),西班牙巴塞罗那Vall D'Herbron医院; 7成人先天性心脏病部门,Aorn Dei Colli - 意大利那不勒斯Monaldi医院; 8意大利佛罗伦萨Careggi大学医院临床与实验医学系结构介入心脏病学; 9荷兰鹿特丹Erasmus医疗中心心脏病学系; 10比利时安特卫普大学护理学院的护理研究与创新中心;和11个心脏病学系 - 德国穆斯特大学蒙斯特大学医院植物和瓣膜心脏病