新技术是为了使用轨道碎片通过电离层时产生的等离子体波来跟踪空间中的小物体[1,2,3]。已经对计算机模拟和实验室测量进行了研究。原位观察结果证实了这些等离子体波的存在是在空间传感器与已知空间对象的结合过程中进行的。小空间物体通过结构化环境时,也可以使用接地传感器和远程卫星仪器检测到。阿拉斯加的HAARP HF设施通过产生对齐的违规行为(FAI)提供了这种结构化环境。空间碎片和卫星通过这些不规则性会激发血浆排放,例如惠斯勒,压缩alfvén或较低的杂种波。当带电的空间对象遇到FAI时,轨道动能转换为电磁等离子体振荡而产生了惠斯勒波动扰动[3。4]。吹口哨者在距离源区域约9000 km/s的范围内繁殖,可以在几个地球 - 拉迪的范围内检测到。在加拿大Cassiope/Swarm-E航天器上的原位电场探头已检测到100 km的快速磁波。检测后,需要空间碎片地理位置才能更新轨道预测模型。从主机传感器的原位测量值可以从空间中电磁(EM)等离子体波的测量值提供范围和到达角度。从目标对象形成e x b poynting通量,从而产生其源方向。到达的角度需要EM场的矢量传感器,以从空间碎屑中给出入射信号的电(E)和磁性(H)矢量成分。这个方向的时间历史记录允许估计目标轨迹通过主机传感器平台通过。当带电的目标碎片越过田间对齐的不规则性时,它会发射一个分散波形,作为惠斯勒下调或磁通型上的速度。来自源点的传播在这些信号中引起时间分散,这些信号在时间和空间范围内都延伸。匹配的带有小波的信号的滤波器处理,等离子波形可以在特定的生成时间确定范围到源的范围。
• CARA currently provides support to ~100 NASA missions at various stages of mission development and operations, guided by the NASA Procedural Requirements (NPR) 8079.1 : – Pre-mission-implementation phase support and analysis via Orbital Collision Avoidance Plan (OCAP) – Pre-launch support via Conjunction Assessment Operations Interface Agreement Plan (CAOIA) – On-Orbit real-time support for collision avoidance and event risk analysis
地球空间已经很拥挤,而且会更加拥挤。这种趋势会迅速增加空间物体之间发生碰撞的概率。由于物体以极高的速度飞行,碰撞后果将是灾难性的。然而,即使当前空间目录的大小为 O(10^4),准确有效的结合评估 (CA) 和碰撞避免 (COLA) 也一直是一大挑战。由于新卫星数量的增加、传感器能力的提高以及凯斯勒综合症,空间目录的大小将迅速增加,除非设计出一种范式转换计算方法,否则情况会更糟。这里我们提出了 SpaceMap 方法,它可以对 O(10^6) 或更多对象执行实时 CA 和近实时 COLA,前提是通过预处理将卫星之间的时空接近度表示在简洁的数据结构中。理论和计算基础是 Voronoi 图,它被称为二维和三维空间中许多对象之间时空推理的最简洁、最有效的数据结构。该算法以 C++ 实现,并以 AstroLibrary 的形式提供,它具有 RESTful API 和 Python 包,可从应用程序调用。借助该库,任何具有基本编程技能的人都可以轻松开发高效的应用程序来解决具有挑战性的时空问题。还介绍了实验结果。
对于由美国商务部、美国联邦航空管理局 (FAA) 和美国联邦通信委员会 (FCC) 等其他美国机构监管的太空运营,NASA 将听从这些机构的意见。作为机构间磋商的一部分,为了促进安全和可持续的太空运营,NASA 合作伙伴(如 FAA 和 FCC)要求 NASA 审查商业太空运营商向美国政府监管机构提出的许可证、有效载荷和/或政策申请。除了这些监管机构要求的信息外,NASA 还准备了各种类型任务的信息示例,这些信息对于加快 NASA 的审查非常有价值。当前的示例可在 https://www.nasa.gov/recommendations-commercial-space-operators 找到。欢迎商业太空运营商就这些示例联系 NASA。
如果您先前往工作地点执行 IDT,但发生了一些事情,要求您在执行任何部分的 AT 之前回家,您的订单将被取消,并且您不会获得任何旅行或交通费用的报销。通过先完成 AT,您可以消除这种可能性。此外,有时资金意味着订单不能在接近 AT 开始日期之前削减,因此在 AT 开始日期之前进行 IDT 也可能会因此导致问题。如果由于任务要求您必须在 AT 之前执行 IDT,请从您的 AC 主管处获得理由并联系您的支队,以便在 IDT 开始之前批准您的订单。
用于自主机载会合评估和防撞的原型基础设施 Austin Probe、Graham Bryan、Tim Woodbury、Evan Novak Emergent Space Technologies, Inc. Shiva Iyer、Apoorva Karra 和 Moriba Jah 博士 德克萨斯大学奥斯汀分校 摘要 我们正在努力构建一个可扩展的自主会合评估和避免原型基础设施。这包括一个地面枢纽,用于同步来自操作员的状态信息和计划机动并识别潜在的会合,以及用于自主评估和避免碰撞的机载飞行软件。这项工作将作为 NASA STMD 飞行实验的一部分在 2023 年进行。 1. 简介 会合评估 (CA) 是运行卫星安全的最重要组成部分之一,由于低地球轨道任务和星座的激增,其重要性不断增加。当与集群或星座的自主机动相结合时,难度和复杂性会增加,当此类系统开始与其他自主机动系统交互时,难度和复杂性会进一步增加。由于许多大型自主星座(如 SpaceX Starlink、Amazon Kuiper 和其他商业提供商)以及 SDA 和 MDA 计划在未来十年部署的持久 LEO 星座,找到可扩展的解决方案是实现太空可持续性的关键。
仪表容易受到温度等因素的轻微波动的影响。许多仪表都具有移动刻度的功能,这通常用于重新归零,尽管在仪表上施加压力时通常不应执行此操作。“零”读数的 1% 误差可以在不重新校准的情况下进行调整,但必须将其记录在记录器中,以确保在任何六个月的认证期内仅进行一次 1% 的调整。此类调整只能由了解仪表操作的合格技术人员进行。
摘要:近年来,硅 (Si) 基肖特基结光电极在光电化学 (PEC) 水分解中引起了广泛关注。要实现高效的 Si 基肖特基结光电极,关键挑战是使光电极不仅具有较高的肖特基势垒高度 (SBH) 以得到高光电压,而且还要确保高效的电荷传输。在本文中,我们提出并展示了一种通过金属硅化结合掺杂剂偏析 (DS) 来制造高性能 NiSi/n-Si 肖特基结光阳极的策略。金属硅化产生的光阳极具有高质量的 NiSi/Si 界面而没有无序的 SiO 2 层,从而确保了高效的电荷传输,从而使光阳极获得了 33 mA cm − 2 的高饱和光电流密度。随后的 DS 通过在 NiSi/n-Si 界面引入电偶极子,使光阳极具有 0.94 eV 的高 SBH。结果,实现了 1.03 V vs RHE 的高光电压和有利的起始电位。此外,NiSi 的强碱性腐蚀抗性还使光阳极在 1 M KOH 中的 PEC 操作期间具有高稳定性。我们的工作提供了一种通用策略来制造金属-硅化物/Si 肖特基结光电极,以实现高性能 PEC 水分解。关键词:硅、金属硅化、掺杂剂偏析、光阳极、水分解■ 介绍