Loading...
机构名称:
¥ 1.0

地球空间已经很拥挤,而且会更加拥挤。这种趋势会迅速增加空间物体之间发生碰撞的概率。由于物体以极高的速度飞行,碰撞后果将是灾难性的。然而,即使当前空间目录的大小为 O(10^4),准确有效的结合评估 (CA) 和碰撞避免 (COLA) 也一直是一大挑战。由于新卫星数量的增加、传感器能力的提高以及凯斯勒综合症,空间目录的大小将迅速增加,除非设计出一种范式转换计算方法,否则情况会更糟。这里我们提出了 SpaceMap 方法,它可以对 O(10^6) 或更多对象执行实时 CA 和近实时 COLA,前提是通过预处理将卫星之间的时空接近度表示在简洁的数据结构中。理论和计算基础是 Voronoi 图,它被称为二维和三维空间中许多对象之间时空推理的最简洁、最有效的数据结构。该算法以 C++ 实现,并以 AstroLibrary 的形式提供,它具有 RESTful API 和 Python 包,可从应用程序调用。借助该库,任何具有基本编程技能的人都可以轻松开发高效的应用程序来解决具有挑战性的时空问题。还介绍了实验结果。

AstroLibrary:一个用于实时合相评估和

AstroLibrary:一个用于实时合相评估和PDF文件第1页

AstroLibrary:一个用于实时合相评估和PDF文件第2页

AstroLibrary:一个用于实时合相评估和PDF文件第3页

AstroLibrary:一个用于实时合相评估和PDF文件第4页

AstroLibrary:一个用于实时合相评估和PDF文件第5页

相关文件推荐