《登记公约》的目的之一是确保联合国秘书长建立并维护发射到外层空间物体的中央登记处。因此,当发射太空物体时,《登记公约》要求“发射国”通知联合国。公约将“发射国”定义为从其领土发射物体的国家或促成其发射的国家(或其国民促成其发射)。
摘要 随着来自世界各地众多设施的天文数据的增加,对更快、更复杂的数据分析方法的需求也随之出现。对天空中大量物体的大量观察所捕获的数据可以非常快地达到很大的体积,这使得科学家无法手动分析。这就需要快速可靠的自动化数据处理方法,这可以在计算机科学研究中找到。利用不同研究领域使用的算法对于处理有关天体的信息至关重要。在这项工作中,我们将计算机科学领域的机器学习方法应用于天文学问题。我们列出了三种不同的机器学习算法及其内部工作原理,并展示了如何将它们应用于天文学问题。我们展示了如何使用这些算法来加速大量数据的处理,以及它们如何帮助科学家对天体进行分类。我们研究了每种算法的表现,并尝试根据不同物体的特征,在分类问题中找到表现最佳的算法。关键词 knn、朴素贝叶斯、决策树
因此,除了理论工作之外,德国航空航天中心(DLR)微波与雷达研究所还开发并构建了一种名为 IoSiS(太空卫星成像)的实验雷达系统,用于对获取低地球轨道物体的先进高分辨率雷达图像产品的新概念进行基础研究。本文概述了使用地面 ISAR 对卫星进行高分辨率成像的原理。此外,还概述了实验雷达系统 IoSiS,并简要概述了计划中的 IoSiS-Next Generation 系统概念。最新的真实空间目标测量结果证明了该系统的能力以及使用厘米分辨率成像雷达进行未来基于雷达的空间监视的潜力。作为基于雷达的空间物体成像领域的新产品,全面的模拟结果表明,使用通过多静态成像几何实现的新预期成像概念,可以多么精确地在三维空间中对空间目标进行成像。
简介 卢森堡大公国承担登记义务的空间物体登记处(国家登记处)是根据 1974 年 11 月 12 日在纽约联合国大会通过的《关于登记射入外层空间物体的公约》(《公约》)和 2020 年 12 月 15 日《空间活动法》设立的。 2021 年 1 月 27 日,卢森堡加入了《空间物体登记公约》,成为该公约的第 70 个缔约国。 联合国大会于 1974 年通过了该公约,以协助识别空间物体,解决缔约国对其空间物体的责任问题,并确保各国和国际政府间组织提供的信息的开放获取。《登记公约》确保联合国秘书长建立和维护一个射入外层空间物体的中央登记处。因此,一旦发射空间物体,《登记公约》要求“登记国”尽快向秘书长提供有关所发射空间物体的信息。联合国在其网站上保存缔约国提供的有关空间物体和空间活动的信息。此外,《登记公约》要求卢森堡维护自己适当的空间物体登记册,这也体现在 2020 年 12 月 15 日法律第 7 章第 15 条中。在成为《登记公约》缔约国之前,卢森堡根据第 1721 B (XVI) 号决议自愿提供空间物体的登记信息。遵守公约后,登记提交符合公约第四条的规定。有关卢森堡已向联合国提交的空间物体登记信息,请参阅联合国外层空间事务办公室 (UNOOSA) 网站。
先进新技术的引入正在改变航天工业。人工智能为与太空相关的活动提供了前所未有的可能性,因为它使空间物体能够获得自主性。空间物体自主水平的提高并非没有法律影响。缺乏人为控制对现有的责任框架提出了挑战。本文回顾了《外层空间条约》和《责任公约》的规定,作为介绍在自主空间物体造成损害的情况下归责的法律依据的主要法律文件。本文研究了这些法律框架在责任归责方面的局限性,并确定了可能导致责任缺口的条件。本文分析了《责任公约》的修订、《外层空间条约》第六条引入的“国际责任”概念和若干国际法原则,作为防止责任缺口和减轻自主空间物体带来的风险的潜在解决方案。
印度在尽可能最大程度上遵守联合国和机构间空间碎片协调委员会 (IADC) 的空间碎片减缓准则,同时努力更好地遵守准则。为遏制空间碎片的增长而采取的措施包括发射前避免碰撞以确定运载火箭的安全升空、对运行中的航天器进行空间物体接近度分析、在需要时执行避免碰撞机动、钝化火箭级、在任务结束后处置卫星和运载火箭上级。2023 年,GSAT-12 重新进入超同步轨道并在退役前钝化,完全符合联合国和 IADC 建议的地球静止轨道物体任务后处置准则。一项极具挑战性的实验成功完成,该实验旨在使 Meghatropiques-1 脱离轨道并确保其在太平洋无人区上空受控重返大气层。印度发射的所有轨道火箭级在任务结束后均钝化。 PSLV-C56 的上级被脱离轨道至 300 公里高度,以将其发射后的轨道寿命限制在不到一个月的范围内。采取了具体举措,以提高新进入太空领域的人的认识,并指导他们实施空间碎片减缓措施。
地面高光谱成像仪能够在观察期内测量未解析驻留空间物体 (URSO) 的光谱特征随时间的变化(或光谱时间特征)。了解特征对 URSO 属性的依赖性可用于开发用于识别物体的信息提取算法,并推断、分类、预测和诊断其状况和健康状况。鉴于 URSO 光谱时间数据的可用性有限,地面遥感观测可以通过基于物理的模拟模型和实验室数据进行补充,以支持特征利用算法的设计、开发、实施和验证。这在训练需要大量数据的机器学习模型时尤为重要。
本研究描述了现场实验,在配备无线电等离子体波接收器的空间物理卫星与其他空间物体结合时测量甚低频 (VLF) 等离子体波 (1-30 kHz),以了解次级空间物体在另一颗卫星附近的快速通过是否可以被检测到。地球电离层中的物体在其轨道运动后会形成一个离子密度稀疏区域,这可以作为物体探测的基础。2022 年,现场实验尝试在太空无线电等离子体传感器快速穿越次级空间物体尾流期间将这些离子密度稀疏检测为宽带 VLF 等离子体波噪声。这是为了回答空间物体是否可以通过其轨道运动在地球电离层中引起的等离子体离子密度扰动来探测。加拿大空间物理卫星 CASSIOPE 启动了其无线电等离子体物理包,并在 CASSIOPE 与次级物体之间预测已知的近距离接近之前、期间和之后的时间记录了电场数据。 CASSIOPE 旨在测量地球的极光、粒子和场,其偏心轨道为 330 x 1200 公里,可偶然采集地球电离层中的各种等离子体状态。此外,对于太空领域意识社区来说,该轨道定期穿过人口密集的轨道壳层,例如 Starlink、Iridium、OneWeb 和其他太空物体,从而定期提供合相机会来尝试测量等离子体振荡。在合相之前,CASSIOPE 从其交叉偶极子无线电接收仪 (RRI) 收集了电场测量值,该仪器可检测到跨度约为 1-35 kHz 的等离子体电场振荡。2022 年初,共描述了 35 次合相。当物体穿过或靠近次级物体的预测尾流时,四次合相表现出 VLF 宽带噪声能量,范围从离子回旋频率 (~36 Hz) 到下混合谐振频率 (~5-6 kHz)。然而,我们发现与次级物体最接近时间的相关性从弱到强。其他会合中,次级物体从 CASSIOPE 后面经过,而 RRI 未穿过次级物体的尾迹,其波能并未超过环境背景辐射 - 这与空间物体离子声马赫锥外的等离子体将表现出未受干扰的等离子体行为的预测一致。虽然空间物体尾迹中的密度稀疏似乎与 VLF 范围内的会合有微弱的关联,但这些发现表明,应从等离子体波的角度来检查检测到的波能与次级物体运动之间的空间和时间分离,其中波能相对于空间物体尾迹几何约束之外的地磁场线传播。
本文件由秘书处根据 2023 年 1 月 30 日从欧洲航天局 (ESA) 代表机构间空间碎片协调委员会 (IADC) 收到的信息编写。信息按收到时的形式复制。
地球轨道上的空间物体总数估计超过 20 万个,而目前不断跟踪和编目的空间物体数量约为 2 万个。在我们这个时代,太空交通量每年都在增加,因此可能发生碰撞的风险也随之增加,全球都需要控制近地空间环境,特别是低地球轨道。这是每个北约国家的共同问题,可以通过各国之间的全球合作来解决。此外,与轨道物体测量位置相关的不确定性是影响性能、准确性和及时性的主要因素之一。因此,旨在协调大量传感器是该领域最重要的方面之一。本文提出了一种算法来估计全球分布的光学资产网络(望远镜和探测器)的性能,该网络使用现成的望远镜组件,部署在不同位置的多个站点。在探测尺寸小至 3 厘米的太空物体的情况下,定量性能指标计算为网络在给定时间窗口内可见的总分类碎片比例(在我们的例子中,已考虑 24 小时)。所提出的算法将所有 NORAD 目录、DISCOS 目录提供的所有物体物理数据以及所有光学和大气数据作为输入。然后,它会传播空间物体群,以获得它们在选定时间窗口内的位置,过滤掉所有不在地面站网络视线范围内足够时间的物体,以保证可行的轨道确定,并对满足所有先前条件的物体估计光学资产可实现的信噪比。这些值直接转化为检测概率,从而为给定的地面传感器网络配置提供性能指数,可用作评估不同架构时要优化的目标函数。