摘要 随着来自世界各地众多设施的天文数据的增加,对更快、更复杂的数据分析方法的需求也随之出现。对天空中大量物体的大量观察所捕获的数据可以非常快地达到很大的体积,这使得科学家无法手动分析。这就需要快速可靠的自动化数据处理方法,这可以在计算机科学研究中找到。利用不同研究领域使用的算法对于处理有关天体的信息至关重要。在这项工作中,我们将计算机科学领域的机器学习方法应用于天文学问题。我们列出了三种不同的机器学习算法及其内部工作原理,并展示了如何将它们应用于天文学问题。我们展示了如何使用这些算法来加速大量数据的处理,以及它们如何帮助科学家对天体进行分类。我们研究了每种算法的表现,并尝试根据不同物体的特征,在分类问题中找到表现最佳的算法。关键词 knn、朴素贝叶斯、决策树
主要关键词