组合优化在理论研究和实际应用中都具有普遍意义。快速发展的量子算法为解决组合优化问题提供了不同的视角。在本文中,我们提出了一种基于量子启发的张量网络算法,用于解决一般的局部约束组合优化问题。我们的算法为感兴趣的问题构建了一个汉密尔顿量,有效地将其映射到量子问题,然后将约束直接编码到张量网络状态中,并通过将系统演化到汉密尔顿量的基态来求解最优解。我们用露天采矿问题演示了我们的算法,结果得出了二次渐近时间复杂度。我们的数值结果表明了这种构造的有效性以及在一般组合优化问题的进一步研究中的潜在应用。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 3 月 9 日发布。;https://doi.org/10.1101/2022.03.08.483529 doi:bioRxiv preprint
量子退火是一种有前途的方法,可用于解决资源受限项目调度问题 (RCPSP) 等复杂调度问题。本研究首次应用量子退火来解决 RCPSP,分析了 12 个众所周知的混合整数线性规划 (MILP) 公式,并将量子比特效率最高的公式转换为二次无约束二进制优化 (QUBO) 模型。然后,我们使用 D-wave advantage 6.3 量子退火器解决该模型,并将其性能与经典计算机求解器进行比较。我们的结果表明,该算法具有巨大的潜力,尤其是对于中小型实例。此外,我们引入了目标时间和 Atos Q 分数指标来评估量子退火和逆量子退火的有效性。本文还探讨了高级量子优化技术,例如定制退火计划,以增强我们对量子计算在运筹学中的理解和应用。
R。Drummond曾在She -fild University,Mappin ST,She -eld,S1 3JD的自动控制与系统工程系任职。电子邮件:ross.drummond@sheffield.ac.uk。N. E. Courtier和D. A. Howey与牛津大学工程科学系,牛津大学,牛津公园17号,OX1 3PJ,牛津,英国牛津,电子邮件:{David.howey,Nicola.courtier}@eng.ox.ac.ac.ac.uk。l D. Couto与控制工程和系统分析部,Brussels,Brussels,B-1050,BELGIUM,BRUSSELS UNIVER。电子邮件:luis.daniel.couto.mendonca@ulb.be。C. Guiver在爱丁堡纳皮尔大学(Edinburgh University,Edinburgh),英国EH10 5DT的工程与建筑环境学院工作。电子邮件:c.guiver@napier.ac.uk。罗斯·德拉蒙德(Ross Drummond)要感谢皇家工程学院通过英国情报界研究奖学金的资助。克里斯·吉夫(Chris Guiver)要感谢埃德·伊特堡(Ed-Inburgh)皇家学会(RSE)通过RSE个人研究奖学金提供的资金。EPSRC FARADAY机构多尺度建模项目(EP/S003053/1,授予号FIRG025)为Nicola Courtier和David Howey提供了支持。
核仁是核糖体生物合成的位点,形成于位于五条人类近端着丝粒染色体 HSA13、HSA14、HSA15、HSA21 和 HSA22 的 p 臂上的 NOR 周围(图 1A;McStay 2016)。rDNA 阵列序列以及近端和远端连接(PJ 和 DJ)在所有五个近端着丝粒之间共享(Floutsakou 等人 2013;van Sluis 等人 2019)。DJ 是功能性 NOR 元件,嵌入核仁周围异染色质 (PNH) 中(Floutsakou 等人 2013)。在中期,NOR 由 UBF(上游结合因子)标记,UBF 是一种核仁 HMG 盒蛋白,可广泛结合 rDNA 阵列(Grob 等人 2014)。当细胞退出后期时,RNA 聚合酶 I (RNA Pol I) 的转录恢复,并在单个 NOR 周围形成核仁 (Hernandez-Verdun 2011; van Sluis 等人 2020)。这些核仁融合成由三个不同区室组成的成熟核仁,反映了核糖体生物发生的阶段 (Ra š ka 等人 2006)。纤维中心 (FC) 单元包含一个或几个 UBF 负载的 rDNA 重复序列 (Yao 等人 2019)。转录发生在 FC 与新生转录本上形成的周围致密纤维成分 (DFC) 之间的界面上。
摘要:在人类与肉体共存的世界中,确保安全互动至关重要。传统的基于逻辑的方法通常缺乏机器人所需的直觉,尤其是在这些方法无法解释所有可能场景的复杂环境中。强化学习在机器人技术中表现出了希望,因为它的适应性优于传统逻辑。但是,增强学习的探索性质会危害安全性。本文解决了动态环境中机器人手臂操纵器计划轨迹的挑战。此外,本文强调了容易奖励黑客的多种奖励作品的陷阱。提出了一种具有简化奖励和约束配方的新方法。这使机器人臂能够避免从未重置的非机构障碍,从而增强操作安全性。提出的方法将标量的预期回报与Markov决策过程结合在一起,通过Lagrange乘法器,从而提高了性能。标量组件使用指示器成本函数值,直接从重播缓冲区采样,作为附加的缩放系数。这种方法在条件不断变化的动态环境中特别有效,而不是仅依靠Lagrange乘数扩展的预期成本。
摘要:通过螺旋桨设计方法与粒子群优化 (PSO) 相结合,开发了一种降低螺旋桨驱动飞机能耗的航空结构算法。优化过程中考虑了多种螺旋桨参数,包括每个螺旋桨截面的翼型几何形状。螺旋桨性能预测工具采用收敛改进的叶片元素动量理论,该理论由从 XFOIL 和经过验证的 OpenFOAM 获得的翼型气动特性提供。根据实验 NACA 4 位数据估计失速角校正,并在出现收敛问题时使用。对气动数据进行校正以考虑压缩性、三维、粘性和雷诺数效应。根据实验数据拟合提出了旋转校正系数。采用基于欧拉-伯努利梁理论的结构模型,并根据有限元分析对其进行验证,同时讨论了离心力的影响。进行了一个案例研究,将弦长和螺距分布与涡流理论的最小损失分布进行了比较。使用印刷螺旋桨进行风洞试验,以得出整个程序的可行性以及 XFOIL 和 CFD 最佳螺旋桨之间的差异。最后,将最佳 CFD 螺旋桨与具有相同直径、螺距和运行条件的商用螺旋桨进行比较,显示出更高的推力和效率。
摘要 — 我们考虑电力聚合器试图了解客户的用电模式,同时通过实时广播调度信号实施负荷调整程序的问题。我们采用多臂老虎机问题公式来解释客户对调度信号响应的随机性和未知性。我们提出了一种受约束的汤普森抽样启发式方法 Con-TS-RTP,作为电力聚合器试图影响客户用电以匹配各种期望需求曲线(即减少高峰时段的需求、整合更多间歇性可再生能源发电、跟踪期望的每日负荷曲线等)的负荷调整问题的解决方案。所提出的 Con-TS-RTP 启发式方法考虑了每日变化的目标负荷曲线(即反映可再生能源预测和期望需求模式的多个目标负荷曲线),并考虑了配电系统的运营约束,以确保客户获得足够的服务并避免潜在的电网故障。我们对我们的算法的遗憾界限进行了讨论,并讨论了在整个学习过程中坚持分销系统约束的运行可靠性。
摘要 — 我们考虑电力聚合器试图了解客户的用电模式,同时通过实时广播调度信号实施负荷调整程序的问题。我们采用多臂老虎机问题公式来解释客户对调度信号响应的随机性和未知性。我们提出了一种受约束的汤普森抽样启发式方法 Con-TS-RTP,作为电力聚合器试图影响客户用电以匹配各种期望需求曲线(即减少高峰时段的需求、整合更多间歇性可再生能源发电、跟踪期望的每日负荷曲线等)的负荷调整问题的解决方案。所提出的 Con-TS-RTP 启发式方法考虑了每日变化的目标负荷曲线(即反映可再生能源预测和期望需求模式的多个目标负荷曲线),并考虑了配电系统的运营约束,以确保客户获得足够的服务并避免潜在的电网故障。我们对我们的算法的遗憾界限进行了讨论,并讨论了在整个学习过程中坚持分销系统约束的运行可靠性。
Conghao Wang获得了中国西安北大学的计算机科学技术学士学位。 他目前是新加坡南南技术大学计算机科学与工程学院的博士候选人。 他的重点是将可解释的AI应用于药物机理预测的应用,以及使用生成模型的小分子和生物制剂的从头设计。 Hiok Hian Ong获得了新加坡南南技术大学的工程科学学士学位(计算机科学)和科学硕士(技术管理)。 他目前正在担任机器学习工程师。 他的研究兴趣在于生物信息学,神经网络和机器学习之间的交集。 Shunsuke Chiba于2006年在东京大学Koichi Narasaka教授的监督下获得了博士学位。 2007年,他从事独立职业,担任新加坡南南技术大学(NTU)学院的独立职业,他目前是化学教授。 他的研究小组着重于从根本上新颖和实用的合成反应和催化的发展,这些反应和催化对于有效供应了药物兴趣的复杂有机分子。 Jagath Rajapakse是新加坡南南技术大学计算机科学与工程学教授。 他拥有莫拉图瓦大学,斯里兰卡大学的电子和电信工程学士学位,以及美国布法罗大学的电气和计算机工程的MS和PHD学位。 收到:2023年11月19日。Conghao Wang获得了中国西安北大学的计算机科学技术学士学位。他目前是新加坡南南技术大学计算机科学与工程学院的博士候选人。他的重点是将可解释的AI应用于药物机理预测的应用,以及使用生成模型的小分子和生物制剂的从头设计。Hiok Hian Ong获得了新加坡南南技术大学的工程科学学士学位(计算机科学)和科学硕士(技术管理)。他目前正在担任机器学习工程师。他的研究兴趣在于生物信息学,神经网络和机器学习之间的交集。Shunsuke Chiba于2006年在东京大学Koichi Narasaka教授的监督下获得了博士学位。2007年,他从事独立职业,担任新加坡南南技术大学(NTU)学院的独立职业,他目前是化学教授。他的研究小组着重于从根本上新颖和实用的合成反应和催化的发展,这些反应和催化对于有效供应了药物兴趣的复杂有机分子。Jagath Rajapakse是新加坡南南技术大学计算机科学与工程学教授。他拥有莫拉图瓦大学,斯里兰卡大学的电子和电信工程学士学位,以及美国布法罗大学的电气和计算机工程的MS和PHD学位。收到:2023年11月19日。他正在德国的认知和脑科学学院和美国国家心理健康研究所访问科学家。他正在马萨诸塞州理工学院的生物工程系访问教授。Rajapakse教授的研究工作在数据科学,机器学习,大脑成像以及计算和系统生物学领域。他目前的研究重点是开发用于诊断和治疗脑部疾病的技术和工具。他还在深入学习中研究抗癌药物发现。修订:2024年3月8日。接受:2024年3月3日©作者2024。牛津大学出版社出版。这是根据Creative Commons归因非商业许可(https://creativecommons.org/licenses/by-nc/4.0/)发行的开放访问文章,该媒介在任何媒介中允许非商业重复使用,分发和复制,前提是原始工作被正确引用。有关商业重复使用,请联系journals.permissions@oup.com