我们描述了 CounterSynth,这是一种微分同胚变形的条件生成模型,可在体积脑图像中诱导标签驱动的、生物学上合理的变化。该模型旨在为下游判别建模任务合成反事实训练数据增强,其中保真度受到数据不平衡、分布不稳定、混杂或规格不足的限制,并且在不同亚群中表现出不公平的表现。我们专注于人口统计属性,使用基于体素的形态测量、条件属性的分类和回归以及 Fréchet 初始距离来评估合成反事实的质量。在人为的人口不平衡和混杂的背景下检查下游判别性能,我们使用英国生物库和 OASIS 磁共振成像数据对 CounterSynth 增强与这些问题的当前解决方案进行基准测试。我们在整体保真度和公平性方面都实现了最先进的改进。 CounterSynth 的源代码可在 https://github.com/guilherme-pombo/CounterSynth 上找到。
2023年,美国国家标准技术研究所(NIST)宣布了Dobraunig,Eichlseder,Mendel和Schläffer设计的Ascon算法家族,为资源约束设备提供有效的密码解决方案。这个决定来自严格的多轮轻巧的加密标准化过程。该标准介绍了一个新的基于ASCON的对称键加密原始家族,旨在提供经过验证的加密,并具有相关数据(AEAD),哈希和可扩展输出功能(XOF)功能,即Ascon-Aead-Aead128,Ascon-Hash256,Ascon-Hash256,Ascon-Xof128,Ascon-Xof128,和Ascon-cxof128。ASCON家族的特征是基于轻质置换的原始词,并提供了可靠的安全性,效率和灵活性,使其非常适合资源受限的环境,例如物联网(IoT)设备,嵌入式系统和低功率传感器。当高级加密标准(AES)可能无法最佳性能时,将开发家庭提供可行的替代方案。该标准草案概述了Ascon-Aead128,Ascon-Hash256,Ascon-XOF128和Ascon-CXOF128的技术规格,并提供其安全属性。
摘要 - 网络函数虚拟化(NFV),该函数将网络函数从硬件中解除,并将其转换为独立于硬件的虚拟网络函数(VNF),是许多新兴网络域,例如5G,Edge,Edge Computing和Data-Center网络。服务功能链(SFC)是VNF的有序集。VNF部署问题是在SFC中找到最佳的部署策略VNF,同时保证服务级协议(SLA)。现有的VNF部署研究主要关注无能量考虑的VNF序列。但是,随着用户和应用程序要求的快速开发,SFC从序列到动态图,服务提供商对NFV的能源消耗越来越敏感。因此,在本文中,我们确定了能节能的图形结构的SFC问题(EG-SFC),并将其作为组合优化问题(COP)提出。受益于COP机器学习的最新进展,我们提出了一个基于约束深度强化学习(DRL)方法的端到端图神经网络(GNN)来求解EG-SFC。我们的方法利用图形卷积网络(GCN)表示DRL中的双重Q-Network(DDQN)的Q网络。提出了掩模机制来处理COP中的资源约束。实验结果表明,所提出的方法可以处理看不见的SFC图,并且比贪婪的算法和传统DDQN更好地表现出更好的性能。
免责声明这一信息是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,或其任何雇员均未对任何信息,设备,产品或过程披露或代表其使用将不会侵犯私人拥有的私有权利。参考文献以商品名称,商标,制造商或其他方式指向任何特定的商业产品,流程或服务,并不一定构成或暗示其认可,建议或受到美国政府或其任何机构的支持。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
尽管受限自然语言生成领域取得了快速发展,但人们却很少花时间去探索词汇在词汇、语义和/或语音上受到限制的语言模型的潜力。我们发现,即使在受到很大限制的情况下,大多数语言模型也能生成引人注目的文本。我们提出了一种简单且普遍适用的技术,通过在生成文本单元之前将过滤函数组合应用于语言模型词汇来修改语言模型的输出。这种方法是即插即用的,不需要对模型进行任何修改。为了展示这种技术的价值,我们介绍了一种易于使用的 AI 写作助手,称为“受限文本生成工作室”(CTGS)。CTGS 允许用户生成或选择具有各种约束的任意组合的文本,例如禁止使用特定字母、强制生成的单词具有一定数量的音节和/或强制单词为另一个单词的部分字谜。我们引入了一个省略字母“e”的散文新数据集。我们表明,与仅在此数据集上进行微调相比,我们的方法可带来绝对优越的性能。我们还展示了一款名为 Gadsby 的 Huggingface“空间”网络应用程序,用于展示这项技术。代码可在此处公开获取:https://github.com/Hellisotherpeople/Cons training-Text-Generation-Studio
哺乳动物皮层中的神经元数量在不同物种之间相差多个数量级。相比之下,兴奋性神经元与抑制性神经元的比例(E:I 比)变化范围要小得多,从 3:1 到 9:1,并且对于同一物种的不同感觉区域大致保持不变。尽管这种结构对于理解神经回路的功能很重要,但这种一致性的原因尚不清楚。虽然基于有效编码假设的最新视觉模型表明,增加兴奋性和抑制性细胞的数量可以改善刺激表征,但由于脑容量的限制,两者无法同时增加。在这项工作中,我们在体积受限(使用神经元数量作为替代)的情况下实现了一种有效的视觉编码模型,同时改变了 E:I 比。我们表明,在几个指标下,该模型在生物学观察到的 E:I 比下的性能最佳。我们认为这是由于计算精度和自然刺激表征能力之间的权衡而发生的。此外,我们通过实验得出了可测试的预测:1) 神经活动稀疏度较高的物种的最佳 E:I 比率应该更高;2) 抑制性突触分布和发放率的特征应该根据 E:I 比率而变化。我们的研究结果得到了我们对公开数据的新初步分析的支持,它提供了第一个基于最佳编码模型的定量和可测试假设,用于研究哺乳动物感觉皮层中兴奋性和抑制性神经类型的分布。
研究文章| Behavioral/Cognitive Causal influence of linguistic learning on perceptual and conceptual processing: A brain- constrained deep neural network study of proper names and category terms https://doi.org/10.1523/JNEUROSCI.1048-23.2023 Received: 6 June 2023 Revised: 1 December 2023 Accepted: 6 December 2023 Copyright © 2024 Nguyen et al.这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。
为成像大脑的时空电活动做出了许多努力,目的是绘制其功能和功能障碍以及帮助管理脑疾病的管理。在这里,我们提出了一个非惯性深度学习 - 基于源成像框架(DEEPSIF),该框架提供了来自非侵入性高密度脑电图(EEG)记录的强大而精确的时空估计值。deepSIF采用了能够建模中尺度脑动力学的生物物质模型产生的合成训练数据。潜在的大脑来源的丰富特征嵌入了现实的训练数据中,并被深sif网络隐含地学习,避免了与明确配置和调整先验有关的并发症在优化问题中,就像常规源成像方法中一样。通过1)通过1)评估一系列数值实验,2)在三个公共数据集中总共20个健康受试者中的感官和认知大脑反应,以及3)严格验证DeepSif在20个识别20型药物抑制患者中的癫痫效果区域的capa的能力,从而对ePiLsists epilessys的同伴进行了比较,结果。deepSif表现出良好的表现,产生的结果与有关感觉和认知信息处理的常见神经科学知识一致,以及有关癫痫组织的位置和范围的临床发现以及超过常规源成像方法。作为数据驱动的成像框架的DeepSIF方法,可以使时空脑动力学的有效且有效的高分辨率功能成像,这表明其对神经科学研究和临床应用的广泛适用性和价值。
摘要。目的:扩散加权磁共振成像(DW-MRI)是一种关键成像方法,用于以毫米尺度捕获和建模组织微体系结构。对测量的DW-MRI信号进行建模的常见做法是通过光纤分布函数(FODF)。此功能是下游拖拉学和连通性分析的重要第一步。具有数据共享的最新优势,大规模多站点DW-MRI数据集可用于多站点研究。但是,在获得DW-MRI期间,测量变化(例如,间和内部变异性,硬件性能和序列设计)是不可避免的。大多数基于模型的方法[例如,受约束的球形反卷积(CSD)]和基于学习的方法(例如,深度学习)并未明确考虑FODF建模中的这种变异性,从而导致在多现场和/或纵向扩散研究上的性能下降。
第三个基准自动驾驶机器人导航(谷仓)挑战赛于2024年IEEE国际机器人和自动企业国际会议(ICRA 2024)举行,并继续评估高度紧缩环境中最先进的自治地面导航系统。与费城(北美)ICRA 2022和2023年第一和第二谷仓挑战的趋势类似,第三个在横滨(亚洲)的谷仓Challenge(欧洲)变得更加地区,即大多数是亚洲团队。比赛的规模略微缩小(六支仿真球队,其中四个被邀请参加物理比赛)。与过去两年相比,竞争结果表明该领域采用了新的机器学习方法,同时又略微融合了一些常见的实践。然而,物理参与的区域性质提出了一个挑战,以促进全世界更广泛的参与,并提供更多的资源前往场地。在本文中,我们讨论了挑战,三个获胜团队使用的方法以及学到的教训以指导未来的研究和竞争。