空间注意力的机制优先考虑与其他位置相对于其他位置的感官信息。这些机制已通过多种方法进行了深入的研究,包括心理物理学,事件型大脑电位,功能成像和单细胞记录(例如,参见Parasuraman,1998年,有关所有这些方法的发现)。这项工作导致了许多可复制的发现和一些重要的区别。的秘密关注转移(例如Mangun,Hillyard和Luck,1993; Posner,1978)。刺激驱动的外源机制已与预期驱动的内源性机制区分开来(例如Hopfinger&Mangun,1998; Jonides,1981; Posner,1978)。通常通过使用空间非预测的外围提示来研究前者,后者通过中央提示或指示可能目标位置的指令进行研究。两种形式的提示都可以在提示的位置带来性能优势,但是外源和内源性机制被认为在几种方面有所不同,包括其效果的时间过程(例如,外源性效应通常更短暂地遵循
https://doi.org/10.26434/chemrxiv-2025-qj8f5 orcid:https://orcid.org/0000-0001-9193-9193-9053 consemrxiv note content content contemrxiv contem许可证:CC由4.0
在研究量子库计算机之后,我们进行了理论研究,以扩大库计算机的应用。我们研究了库计算机的通用架构,其中由不同动态控制的库计算机以输出反馈配置互连。这种架构的动机是使用非线性闭环结构来更好地捕获表现出非线性反馈现象的数据,类似于用于系统识别的 Wiener-Hammerstein 反馈模型。推导出互连库计算机均匀收敛的定理。然后,我们表明具有输出反馈的均匀收敛库计算机实现了一大类非线性自回归模型。最后,我们考虑了库设计问题,并提出了一种有效的算法来优化库内部参数,并展示了在噪声状态测量下几乎肯定收敛到 Kuhn-Tucker 点。
摘要 - 在本文中,我们使用原始加固学习(RL)方法提出了一种基于学习的非线性模型预测控制器(NMPC),以学习NMPC方案的最佳权重。控制器用作深度预期SARSA的当前动作值函数,其中通常用次级NMPC获得的后续动作值函数与神经网络(NN)近似。在现有方法方面,我们添加了NN的输入NMPC学习参数的当前值,以便网络能够近似行动值函数并稳定学习性能。另外,在使用NN的情况下,实时计算负担大约减半而不会影响闭环性能。此外,我们将梯度时间差异方法与参数化的NMPC结合在一起,作为预期的SARSA RL方法的函数近似函数,以克服函数近似中存在非线性时克服潜在参数的差异和不稳定性问题。仿真结果表明,所提出的方法在没有不稳定性问题的情况下收敛到本地最佳解决方案。
Yen-Ting Lu、Jeanne Loue-Manifel、Norbert Bollier、Philippe Gadient、Freya de Winter 等。Marchantia 中导水细胞的趋同进化招募了 ZHOUPI 基因,促进细胞壁强化和程序性细胞死亡。当代生物学 - CB,2024,34 (4),第 793-807 页。�10.1016/j.cub.2024.01.014�。�hal-04434325�
基于碎片的量子化学方法提供了一种避免电子结构计算的非线性缩放的方法,因此可以使用高级方法研究大型分子系统。在这里,我们使用碎片来计算具有数千个原子的系统中的蛋白质-配体相互作用能,使用一种用于管理基于碎片的计算的新软件平台,该平台实现了屏蔽多体展开。使用最小基半经验方法 (HF-3c) 进行的收敛测试表明,使用单残基碎片和简单氢帽的二体计算足以重现使用传统超分子电子结构计算获得的相互作用能,误差在 1 kcal/mol 以内,计算成本约为 1%。我们还表明,HF-3c 结果说明了密度泛函理论在增强四倍 ζ 质量的基组中获得的趋势。碎片化的战略部署有利于融合生物分子模型系统与高质量电子结构方法和基组一起使用,将从头算量子化学引入迄今为止难以想象的规模的系统。这将有助于为机器学习应用生成高质量的训练数据。
收敛-发散 (CD) 喷嘴的优化对于整个航空航天工业的各种应用都至关重要 - 这些领域与 NASA 的使命密切相关。这项研究特别关注机器学习(特别是遗传算法)和计算流体动力学 (CFD) 软件在 CD 喷嘴几何优化问题中的应用。通过操纵三次样条连接的控制点的位置,可以创建一个开放的设计空间并驱动性能最佳的单个 CD 喷嘴产生通过欧拉方程计算的等熵流场 (Δ𝑆= 0.0𝐽𝑘𝑔𝐾)。本文产生的最佳情况对 Δ𝑆= 0.935𝐽𝑘𝑔𝐾 的局部最小几何形状进行了初始猜测。 395 万美元。该项目奠定的基础为进一步应用遗传算法优化 CD 喷嘴和其他亚音速/超音速流体组件打开了大门。
1 冷泉港实验室,美国纽约州冷泉港。2 霍华德休斯医学研究所,冷泉港实验室,美国纽约州冷泉港。3 瓦伦西亚理工大学瓦伦西亚农业多样性保护与促进研究所,西班牙瓦伦西亚。4 美国马里兰州巴尔的摩约翰霍普金斯大学计算机科学系。5 美国马里兰州巴尔的摩约翰霍普金斯大学遗传医学系。6 法国国家农业、食品与环境研究所,植物-微生物相互作用实验室,法国图卢兹。7 美国纽约州冷泉港冷泉港实验室生物科学学院。8 美国纽约州伊萨卡博伊斯汤普森研究所。9 加拿大安大略省圭尔夫大学综合生物学系。10 英国爱丁堡爱丁堡皇家植物园。 11 美国农业部农业研究局,戴尔·邦珀斯国家水稻研究中心,美国阿肯色州斯图加特。12 以色列拉马特伊沙伊新亚尔研究中心,农业研究组织,蔬菜科学系,瓜类科。13 德国盖特斯莱本莱布尼茨植物遗传与作物研究所。14 德国哈雷(萨勒河)马丁路德哈雷维滕贝格大学作物遗传学系。15 美国新墨西哥州拉斯克鲁塞斯新墨西哥州立大学植物与环境科学系。16 美国新墨西哥州阿尔卡尔德新墨西哥州立大学可持续农业科学中心。17 法国里昂高等师范学院,法国国家农业科学研究院,里昂大学,植物繁殖与发展实验室。18 美国马萨诸塞州南哈德利曼荷莲学院生物科学系。19 英国伦敦自然历史博物馆。 20 加拿大安大略省多伦多市多伦多大学生理学系和唐纳利细胞与生物分子研究中心。21 美国纽约州伊萨卡市康奈尔大学植物育种与遗传学系。22 以色列雷霍沃特魏茨曼科学研究所植物与环境科学系。
长期以来,精神分裂症的神经发育假说认为,传统上定义该疾病的主要精神病症状(最常出现在青春期晚期或成年早期)是大脑发育过程早期中断的晚期表现(1-3)。在过去的二十年里,两大研究机构的发现越来越支持这一假说,并开始确定精神分裂症更具体的致病过程以及未来精神病的早期标志。特别是,大规模的遗传学研究越来越多地将涉及突触信号传导和可塑性的基因与精神分裂症的发病机制联系起来,对精神病高危人群的研究表明,后来患上精神分裂症的人早在出现全面精神病症状之前,认知、社交、运动和神经生物学过程就已经发生了改变(详见 4、5)。平均而言,在后来患上精神病的个体中,认知和更广泛的社会心理功能障碍在整个发育过程中会逐渐增加,而且尽管阳性症状得到了成功治疗,但这些障碍通常仍会持续存在,从而导致与该疾病相关的慢性残疾 (6, 7)。这组研究还强调了在第一次精神病发作前几年内,个体临床症状的异质性和未分化性。总之,这些发现为关注早期干预措施铺平了道路,这些干预措施可以降低高危人群患上全面精神病的可能性。然而,随着人们越来越认识到导致精神病风险的具体遗传和环境因素往往因人而异,并且与其他疾病的风险重叠,未来研究的一个关键目标是明确哪些干预措施对谁最有效,以及如何优化疾病预测模型。
Philip Ancliff 6,JuttaKöglmeier6,Sally B. Killick 7,Austin Kulasarararaj 8,Stefan Meyer 9,10,11,Elisa Laurenti 2.3,