目前正在开发脑机接口,以恢复因受伤或疾病而瘫痪的人的运动能力。虽然治疗潜力巨大,但接口的长期稳定性对于广泛的临床应用至关重要。虽然许多因素都会影响记录和刺激性能,包括电极材料稳定性和宿主组织反应,但这些因素尚未在人体植入物中进行研究。在这项临床研究中,我们试图通过外植体分析来表征材料完整性和生物组织封装,以确定影响电生理性能的因素。我们检查了从参与皮层内 BCI 研究的两名人类参与者身上移植的总共六个犹他阵列。在一名参与者 (P1) 体内植入了两个铂 (Pt) 阵列 980 天,在另一名参与者 (P2) 体内植入了两个 Pt 和两个氧化铱 (IrOx) 阵列 182 天。我们观察到,所有六个阵列的记录质量都呈现出相似的趋势,即在最初 30 – 40 天内峰峰值电压最初增加,随后在 P1 中逐渐下降。使用光学和双光子显微镜,我们观察到在参与者 P1 中植入较长时间的两个阵列的组织包裹程度更高。然后,我们使用扫描电子显微镜和能量色散 X 射线光谱来评估材料退化。发现 Pt 阵列的所有材料退化指标在植入时间较长的参与者中更为明显。两个 IrOx 阵列接受了短暂的调查刺激,其中一个阵列显示大多数受刺激部位的铱丢失。记录性能似乎不受这种铱损失的影响,这表明 IrOx 涂层的附着力可能受到刺激的影响,但金属层直到或之后才脱落阵列移除。总之,植入时间较长的阵列中组织包裹和材料降解更为明显。此外,这些阵列的信号幅度和阻抗也较低。应开发新的生物材料策略,以最大限度地减少纤维包裹并增强材料稳定性,以实现较长植入期内的高质量记录和刺激。
脑损伤会导致远离病变的几个区域发生血流动力学变化。我们的目标是更好地了解清醒且行为正常的雌性猴子中这种重组的神经元相关性。我们使用可逆失活技术“损伤”初级运动皮层,同时在行为障碍发生之前和之后连续记录两个半球腹侧运动前皮层的神经元活动。失活迅速引起神经元放电的深刻改变,这些改变在每个半球内和两个半球之间都是不均匀的,发生在受影响或未受影响的手臂运动期间,并在抓握的不同阶段有所不同。我们的研究结果支持了广泛的、比预期更复杂的神经元重组发生在双半球皮层网络中参与控制手部运动的保留区域中。这种广泛的重组模式提供了潜在的目标,应该考虑开发脑损伤后早期应用的神经调节方案。
在SZ(2)的上下文中自己。重度抑郁症(MDD)的特征是影响障碍,认知功能障碍和明显的社会心理障碍,这些障碍可能会持续到几周到几年。它表明,在有症状缓解后,MDD的认知功能障碍持续存在,这可能导致社会功能障碍和自杀念头(3)。许多神经影像学研究表明,SZ和MDD患者的认知降低与前额叶皮层(PFC)功能障碍有关(4,5)。fMRI研究提供了证据,表明显着性网络异常可能在这两种精神疾病的发病机理中起关键作用(6)。多通道功能近红外光谱(FNIRS)是研究大脑皮层血液动力学活性的一种相对较新的方法。与其他神经影像学方法(例如fMRI或SPECT)相比,FNIRS具有较高的时间分辨率,并且可以透彻地使用。与EEG和MEG不同,它的数据不太容易受到电噪声的影响,因为它是一种光学成像方式(7)。由于其广泛的适用性,越来越多的研究人员正在使用FNIRS研究精神疾病中的大脑功能(8)。口头表达任务(VFT)是FNIRS研究中的代表性认知任务,以评估执行功能,这被认为与PFC的功能相关。经典的VFT采用两种形式的语音或语义单词效果,要求参与者以某个字母或属于某些类别的单词(9)的属性开始产生尽可能多的单词。许多研究发现,在VFT期间,SZ或MDD中PFC的功能不全(10,11)。但是,VFT仅涵盖执行功能的受限方面。不同的任务领域来探索精神疾病患者的认知功能。伦敦塔(TOL)任务是另一种经典的高灵敏度执行功能测试工具,主要反映了计划和解决问题的能力(12)。TOL任务要求参与者运用多种类型的能力,例如复杂的视觉和空间计划,工作记忆和选择性关注(13)。先前的FNIRS研究发现,在第一个集合SZ期间,前额叶激活降低(14)。一项研究比较了SZ和MDD患者的认知和执行功能,这表明患者的性能低于HCS,而SZ的性能比MDD差(15)。但是,在使用FNIRS的TOL任务和VFT任务期间,尚无研究比较SZ和MDD患者之间的大脑激活模式。综上所述,本研究旨在评估在VFT和TOL任务期间SZ和MDD患者脑激活的不同特征。此外,我们有兴趣发现FNIRS是否可以区分这两种精神障碍。
前言................................................................................................................................................ xvii
前额叶皮层(PFC)在目标定向的认知中起关键作用,但其代表性代码仍然是一个开放的问题,即解码技术在解散与PFC的任务相关变量方面有效。在这里,我们将正则线性判别分析应用于人类头皮脑电图数据,并能够区分智力旋转任务与具有87%解码精度的色彩感知任务。侧面PFC中的背侧和腹侧区域提供了分离这两个任务的主要特征。我们的发现表明,脑电图可以可靠地从PFC解码两个独立的任务状态,并强调PFC背或腹侧功能特定在处理Where旋转任务与哪种颜色任务时。
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2021 年 5 月 27 日发布。;https://doi.org/10.1101/2021.05.26.445794 doi:bioRxiv preprint
方法:在进行基线评估后,69 名患有 CB 障碍的个体以双盲、受试者间设计随机接受针对左侧 OFC 的两种主动刺激条件之一的单次疗程——间歇性 Theta 爆发刺激 (iTBS),预计会增加 OFC 活动,或连续 TBS (cTBS),预计会降低活动(两种条件:600 次脉冲,110% 目标 RMT)。在这两种情况下,大脑调节都与随后的计算机任务配对,该任务提供练习以克服临床相关习惯(过度学习的电击回避行为),在 OFC 增加/减少的预期窗口期间进行。获取了针对特定设计的压力实验室探测进行的目标参与 (fMRI) 和 CB 的前后评估。
广泛认识到,连续的感觉反馈在日常生活中的准确运动控制中起着至关重要的作用。反馈信息用于调整力量输出并纠正错误。虽然运动皮层与运动(CM1)对侧(CM1)在此控制中起主要作用,但收敛证据支持了同侧初级运动皮层(IM1)也直接有助于手和固定机运动的想法。同样,当可视反馈可用时,主视觉皮层(V1)及其与电机网络的相互作用对于准确的运动性能也很重要。为了阐明这个问题,我们在兼容的橡胶灯泡等轴测压缩期间进行了和整合的行为和脑电图(EEG)测量,在有和没有视觉反馈的情况下,最大自愿收缩的10%和30%。我们使用了半盲方法(功能源分离(FSS))来识别CM1,IM1和V1中Mu -Fquence(8-13 Hz)EEG响应的单独功能源。首次在这里,我们使用正交FSS来提取多个来源,通过使用相同的功能约束,提供了提取不同频率范围内振荡但具有不同形态分布的不同源的能力。我们分析了这些来源中与MU功率事件相关的Denschronization(ERD)的单审时间,并将它们与力量测量联系起来,以了解哪些方面对于良好的任务绩效最重要。虽然MU功率的振幅与任何来源中的收缩力无关,但它能够提供
摘要:本研究旨在研究识别前额叶皮层中大脑活动的任务,这些任务与不同偏好水平的音乐相对应。由于有关主题最喜欢的音乐影响的任务表现会导致更好的结果,因此我们专注于对音乐偏好水平的脑电图(EEG)乐队的物理解释。实验是使用连续响应数字界面实现的,用于三种类型的音乐刺激的偏好分类。结果表明,最喜欢的歌曲比低和中等偏好水平的音乐更为引人注目。此外,额叶theta与认知状态的相关性表明,额叶theta不仅与认知状态有关,而且与情感处理相关。这些发现表明,最喜欢的歌曲对听众的积极影响比不太有利的音乐产生了更多的积极影响,并暗示额叶皮质中的Theta和Lower Alpha是认知状态和情感的良好指标。
人类原发性体感皮质(S1)中的心脏内微刺激(ICM)已被用于成功引起自然的感觉。然而,诱发感觉的背后的神经生理机制仍然未知。要了解特定刺激参数如何引起某些感觉,我们必须首先了解大脑中这些感觉的表示。在这项研究中,我们记录了植入S1,前体皮层和男性参与者的后顶叶皮层的皮质内微电极阵列,执行了体感成像任务。所想象的感觉是在同一参与者的同一阵列中由ICMS先前引起的感觉。在尖峰和局部场上的记录中,神经信号的特征都可用于对不同的想象感觉进行分类。这些功能随着时间的推移而显示稳定。感觉运动皮层仅在图像任务过程中编码想象中的感觉,而后顶叶皮层则用提示呈现开始编码感觉。这些发现表明,感觉体验的不同方面可以从整个皮质感觉网络中的内部记录的人类神经信号分别解码。这些独特的感官表示基础的活动可能会告知刺激参数,以通过ICMS在未来的工作中通过ICMS进行特定的感觉。