红铃虫(Pectinophora gossypiella)对全球棉花种植构成重大威胁,造成重大经济损失和环境危害。红铃虫侵染后果严重,给棉花生产者带来沉重的经济负担。棉花产量下降和质量下降会立即带来经济损失。随着害虫管理策略的需要,负担也随之增加,需要额外投入资源和劳动力。传统的害虫管理方法依赖于化学农药,加剧了生态失衡并导致抗药性。综合害虫管理 (IPM) 等可持续替代方案通过结合针对特定情况的生物、文化和化学干预措施,提供了全面的解决方案。然而,害虫抗药性的出现需要不断创新害虫管理技术。精准农业、遥感和基因工程等新兴技术有望彻底改变害虫管理实践。这些进步使得有针对性地应用投入、早期害虫检测和开发抗性棉花品种成为可能。此外,多组学方法和基因组编辑技术为了解抗虫害的分子机制提供了见解,有助于开发抗性棉花品种。可持续害虫管理棉花育种的未来在于整合这些技术,确保棉花农业的长期可行性,同时最大限度地减少对环境的影响。
文章历史记录:24-045收到:20024年5月12日修订:21-JUL-20124被接受:2024年7月27日,摘要Clcuv是对全球棉花生产的威胁。棉花叶卷曲疾病是中国,巴基斯坦,印度,菲律宾和泰国等棉花生产国的风险。该病毒负责降低产量,以及骨数量及其体重的减少以及植物尺寸的总体减少。clcud是由单核病毒以及Alpha和Beta卫星引起的。有许多Clcuv菌株,例如棉叶卷曲的Kokhran病毒(Clcukov),棉叶卷曲的Alabad病毒(Clcualv),棉花叶卷卷拉贾斯坦病毒(Clcurav),棉质叶卷曲curl Multan病毒(clcumuv),棉质叶叶curl gezir gezira virus。粉虱,bemisia tabaci负责Clcud的转移。可以进行无数的测量,以最大程度地减少病毒对棉花植物的影响,去除替代寄主,早期播种,使用适当的肥料来健康植物生长,农药消除有害生物的种群(白蝇)。还设计了一些遗传学和生物技术方法来控制和发展对病毒的抗性。此外,可以通过CRISPR-CAS技术通过病原体衍生的抗性或基因编辑来产生转基因品种来产生抗性。将来,我们将能够生产具有更好抵抗疾病和更好产量的新植物品种。在本综述中讨论了Clcuv蔓延所涉及的遗传成分,其向量,传播,受影响区域,不同的菌株和管理策略。关键词:clcuv,遗传成分,α-卫星,β卫星,bemisia tabaci,管理
对植物研究人员的众多农艺属性与产量的作物性质,绩效水平和关联的全面了解对于应对棉花限制限制是必要的。但是,缺乏有关棉花产量,相关和纤维质量性状的相关性和路径系数分析的足够信息。了解不同特征与将相关系数进一步分配到直接和间接效应之间的相关性知识是对可持续遗传增强的任何利用不足的作物改善的先决条件。实验是在十二个基因型上进行的,并进行了三场检查,以评估不同特征对皮棉产量的关联,直接和间接影响。该实验在灌溉状态下在Werer农业研究中心和NASA/Birale Farm种植,在随机的完整块设计中,在2016年至2018年的种植季节中进行了三次复制。数据。相关研究表明,皮棉产率与每植物的骨数量,种子棉产量,杜松子酒发育和微生物的数量显着且正相关,而在表型和基因型水平上,它与纤维长度显着且负相关。在表型和基因型水平上的路径系数分析表明,种子棉对棉绒产量的直接影响最大,其次是杜松子酒的囊肿和每植物的毛孔数量。相关性和路径分析都表明种子棉的产量,杜松子酒的发作和每植物的骨数量是皮棉产量的主要贡献者。因此,本研究表明,更多的种子棉产量,杜松子酒的发作和每植物的骨数量是选择高棉绒产量基因型的主要产量因素。
2) M. Mounho、C. Fuksa、R. Clark、W. Brooks、A. Steiner、M. Hopkins、A. Neuber、J. Stephens,“新型真空绝缘体几何形状中的统计闪络概率特性” Phys. Plasmas 31, 080701 (2024)。3) T. Wright、D. Saheb、J. Hoebelheinrich、J. Mankowski、J. Dickens、A. Neuber、E. Schrock、J. Schrock、J. Stephens“用于 RF 生产的固态非线性传输线 PCB 的特性” IEEE Trans. Plasma Sci. 2024。4) M. Flynn、L. Vialetto、A. Fierro、A. Neuber、J. Stephens,“低温等离子体动力学模型中各向异性散射的基准计算” J. Phys. D: Appl. Phys. 57 , 255204 (2024)。5) R. Clark,M. Mounho,W. Brooks,M. Hopkins,J. Stephens,A. Neuber,“真空中阳极引发表面闪络的早期光发射的光谱研究” Phys. Plasmas 31 , 032112 (2024)。6) A. Fierro,A. Alibalazadeh,J. Stephens,C. Moore“流光放电的大规模并行轴对称流体模型” Comp. Plasma Phys. 305 , 109345 (2024)。7) N. Fryar,K. Schriner,J. Stephens,J. Dickens,A. Young,A. Neuber“对 Novec TM 4710 在通量压缩发生器中应用的适用性进行基准测试” IEEE Trans. Plasma Sci.第 1-6 页 (2024)。8) B. Esser、Z. Cardenas、JT Mockert、JC Stephens、JC Dickens、JJ Mankowski、AA Neuber、D. Friesen、D. Hattz、C. Nelson“接近速度和电极几何形状对浮动电介质静电放电的影响” IEEE Trans. Plasma Sci. 第 1-8 页,(2024)。9) N. Fryar、J. Stephens、J. Mankowski、J. Dickens、D. Hattz、N. Koone、A. Neuber“评估避雷针几何形状对强背景电场下雷电拦截功效的影响” AIP Adv. 14,045235 (2024)。 10)H. Spencer、D. Wright、A. Gregory、J. Mankowski、J. Stephens、J. Dickens、A. Neuber
- 葡萄糖共转运蛋白-2(SGLT2)抑制剂在其心血管益处时有一个偶然的故事,并且这些好处继续出现。在对新糖尿病药物的心血管风险的关注下,2008年美国食品药品监督管理局需要收集安全数据。具有讽刺意味的是,许多大型心血管结局试验很快就会揭示出正信号,这表明它们具有明显的心血管益处。SGLT2抑制剂可用于治疗糖尿病的血红蛋白A1C减少,但显示它们可显着降低这些患者重大心血管事件的风险。心血管疾病仍然是2型糖尿病患者死亡率的主要原因,在3例死亡中多达2分。
棉花农艺学,生理和土壤会议为讨论棉花植物的生命过程以及影响作物性能和盈利能力的植物和土壤变量之间的相互作用提供了论坛。演讲和海报将重点关注从分子生物学到应用农艺研究的主题。这包括最近且正在进行的研究,该研究涉及与棉花生产的各个方面有关的广泛主题,包括但不限于轮换,植物营养,肥料配方,肥料施用速度和技术,对废物(肥料和生物植物)的有益利用(肥料和生物植物),耕作方法,耕作方法,灌溉技术,遥感技术,遥感和精致农业。提出的研究将包括旨在更好地了解这些生命过程的基础研究,以研究操纵植物的棉花生理学的遗传,化学,生物学和物理手段,以提高产量和改善的纤维质量。与棉花生长,生产和管理的生理方面有关的应用研究也是该计划的一部分。
药物访问制造商援助计划(MAP) - 2024年5月更新•对于未保险,投资不足*和Medicare患者,必须完成,日期和签名(湿签名(湿签名),患者和处方者都由其全部签名(湿签名)。必须每年提交,如果患者继续符合资格标准,则每年都可以重新注册•如果制造商向UNC SSC发送处方处方(由于白色行李法规,可能不会将处方发送给HCP),则必须将处方e-Perfipration提供给UNC SSC(并不需要使用新剂量的滴定)•新的处方•滴定量•to dosering doser doser do dose do de de depere do fore for to for for fore for fore for for for for for for for to to to to do to for fore depains• Brenzavvy™(Bexagliflozin),Steglatro®(Ertugliflozin),Steglujan®(Ertugliflozin/sitagliptin)或Segluromet®(Ertugliflozin/Metformin),Inpefaga®(Sotaglifliflozin)(sotagliflozin)(sotaglifliflozin)at Time 1。2024地图申请的联邦贫困限制指南
引言肾脏在调节哺乳动物的葡萄糖稳态方面具有重要作用。在肾小球中过滤了大约180克/天葡萄糖,绝大多数被肾近端小管细胞(KPTC)重吸收,主要是通过钠 - 葡萄糖葡萄糖共转运蛋白2(SGLT2)(SGLT2)(SGLT2)(1-3)。在糖尿病中,葡萄糖吸附增加,从而加剧了高血糖症(3)。sglt2抑制剂(SGLT2I)诱导糖尿病,通常用于治疗糖尿病。引人注目的是,大规模试验始终显示SGLT2I有效地防止了肾功能的下降,并改善了有或没有糖尿病患者的充血性心力衰竭的心脏功能;这些改善包括对末期肾脏疾病的进展减慢,心力衰竭的住院时间较少,死亡率降低(4-10)。早期临床研究表明,SGLT2I对非酒精性脂肪肝病(NAFLD)患者也有益(11,12)。有趣的是,SGLT2I Canagliflozin已显示可延长老年男性啮齿动物的寿命(13)。SGLT2I的这些强大的多机构有益作用表明,通过增加糖尿的葡萄糖负荷减少葡萄糖负荷会诱导系统的代谢重编程,从而影响遥远器官的代谢。ferrannini及其同事表明,在2型糖尿病患者中,SGLT2I诱导的糖尿症与内源性葡萄糖产生的增加有关,胰岛素敏感性增强以及从碳水化合物到脂质的底物利用率转移(14,15);已经假设这种代谢转移介导了SGLT2I的有益心脏作用(2)。根据这一假设,糖尿降低
挑战乌兹别克斯坦是世界上最大的棉花生产国之一,每年在约一百万公顷的土地上种植三百多万吨棉花。因此,棉花对该国的经济和社会进步至关重要,因为它雇用了很大一部分劳动力,并贡献了国内生产总值 (GDP) 的约 18%。然而,多年的粗放种植带来了各种社会、环境和经济挑战。其中包括大规模种植同一作物、农场规模扩大、作物价格不稳定、强迫劳动和童工、土壤健康状况不佳以及在水资源稀缺的地区过度使用水。这些错误的耕作方法加剧了气候变化,增加了社会冲突的风险,并将乌兹别克斯坦棉花引向可持续性和负责任生产要求较低的市场,阻碍了任何向好的变化。
叶形被认为是作物育种中最重要的农艺性状之一。然而,棉花叶片形态发生的分子基础仍然很大程度上未知。在这项研究中,通过使用叶片向上卷曲的天然棉花突变体 cu 进行遗传作图和分子研究,成功鉴定出致病基因 GHCU 是叶片扁平化的关键调控因子。使用 CRISPR 敲除棉花和烟草中的 GHCU 或其同源物会导致叶片形状异常。进一步发现,GHCU 促进 HD 蛋白 KNOTTED1-like (KNGH1) 从近轴区域到远轴区域的运输。GHCU 功能的丧失将 KNGH1 限制在近轴表皮区域,导致近轴边界的生长素反应水平低于远轴区域。生长素分布的这种空间不对称产生了 cu 突变体向上卷曲的叶片表型。通过单细胞 RNA 测序和时空转录组数据分析,证实生长素生物合成基因在近轴和远轴表皮细胞中不对称表达。总体而言,这些发现表明 GHCU 通过促进 KNGH1 的细胞间运输,从而影响生长素反应水平,在叶片扁平化的调控中起着至关重要的作用。