摘要。横梁开关是多阶段互连网络中的基本组件。因此,进行了这项研究是为了研究具有两个多路复用器的横杆开关的性能。使用量子点蜂窝自动机(QCA)技术和QCA Designer软件模拟了所提供的横梁开关,并根据细胞数,占用面积,时钟数和能量消耗进行了研究和优化。使用提供的横梁开关,基线网络的设计是在单元格和占用区域方面是最佳的。此外,研究并模拟了输入状态的数量,以验证基线网络的准确性。所提出的横梁开关使用62个QCA单元,开关的占用区域等于0.06µm 2,其潜伏期等于4个时钟区域,这比其他设计更有效。在本文中,使用呈现的横梁开关,基线网络由1713个单元格设计,占领面积为2.89µm 2。
摘要 — 实时尖峰分类和处理对于闭环脑机接口和神经假体至关重要。具有数百个电极的高密度多电极阵列的最新发展使得能够同时记录来自大量神经元的尖峰。然而,高通道数对实时尖峰分类硬件的数据传输带宽和计算复杂性提出了严格的要求。因此,有必要开发一种专门的实时硬件,该硬件可以在高吞吐量下动态地对神经尖峰进行分类,同时消耗最少的功率。在这里,我们介绍了一种实时、低延迟的尖峰分类处理器,它利用高密度 CuO x 电阻交叉开关以大规模并行方式实现内存尖峰分类。我们开发了一种与 CMOS BEOL 集成兼容的制造工艺。我们广泛描述了 CuO x 存储设备的开关特性和统计变化。为了使用交叉开关阵列实现尖峰分类,我们开发了一种基于模板匹配的尖峰分类算法,该算法可以直接映射到 RRAM 交叉开关上。通过使用合成和体内细胞外脉冲记录,我们通过实验证明了高准确度的节能脉冲分类。与基于 FPGA 和微控制器的其他硬件实现相比,我们的神经形态接口在实时脉冲分类的面积(减少约 1000 倍面积)、功率(减少约 200 倍功率)和延迟(对 100 个通道进行分类的延迟为 4.8μs)方面均有显著改善。
与人类视觉相比,由图像传感器和处理器组成的传统机器视觉由于图像感测和处理在物理上分离,存在高延迟和大功耗的问题。具有大脑启发视觉感知的神经形态视觉系统为该问题提供了一个有希望的解决方案。在这里,我们提出并演示了一种原型神经形态视觉系统,该系统通过将视网膜传感器与忆阻交叉开关联网。我们使用具有栅极可调光响应的 WSe 2 /h-BN/Al 2 O 3 范德华异质结构来制造视网膜传感器,以紧密模拟人类视网膜同时感测和处理图像的能力。然后,我们将传感器与大规模 Pt/Ta/HfO 2 /Ta 单晶体管单电阻 (1T1R) 忆阻交叉开关联网,该交叉开关的作用类似于人脑中的视觉皮层。实现的神经形态视觉系统可以快速识别字母和跟踪物体,表明在完全模拟状态下具有图像感测、处理和识别的能力。我们的工作表明,这种神经形态视觉系统可能会为未来的视觉感知应用开辟前所未有的机会。
关键字; UTBB 28NM FD-SOI,Analog SNN,Analog Envm,Envm Integration。2。简介基于新兴的非易失性记忆(ENKM)横杆的尖峰神经网络(SNN)是有希望的内存计算组件,这些组件具有出色的能力,可在边缘低功率人工智能。然而,Envms突触阵列与28nm超薄体和掩埋的氧化物完全耗尽的硅在绝缘子中(UTBB-FDSOI)技术节点的结合是一个挑战。在模拟尖峰神经网络(SNN)中,输入神经元通过单位驱动器透射器(1T1R)突触与输出神经元互连,并通过突触量通过突触转换为电流的电压尖峰来完成计算[1]。神经元会积聚尖峰到预定义的阈值,然后产生输出尖峰。神经元能力区分和容纳大量突触和输入尖峰的能力直接与直至神经元的射击阈值的电压摆动直接相关。这主要取决于膜电容,突触电荷的净数和低功率神经元的阈值[2]。
摘要 — 卷积神经网络 (CNN) 是最重要的深度神经网络 (DNN) 类别之一,有助于解决许多与图像识别和计算机视觉相关的任务。它们使用传统 CMOS 技术和数字设计技术的传统实现仍然被认为非常耗能。浮点 CNN 主要依赖于 MAC(乘法和累加)运算。最近,基于 XNOR 和位计数运算的经济高效的 Bite-wise CNN 已被视为可能的硬件实现候选。然而,由于内存和计算核心之间密集的数据提取导致的冯诺依曼瓶颈限制了它们在硬件上的可扩展性。XNOR-BITCOUNT 操作可以通过在忆阻交叉开关阵列上执行的内存计算 (IMC) 范例轻松实现。在新兴的忆阻设备中,自旋轨道扭矩磁随机存取存储器 (SOT-MRAM) 提供了具有更高导通电阻的可能性,从而可以降低读取电流,因为所有交叉开关阵列都是并行读取的。这有助于进一步降低能耗,为更大的交叉开关设计铺平道路。本研究提出了一种基于 SOT-MRAM 的交叉开关架构,能耗极低;我们研究了工艺变异性对突触权重的影响,并对整个交叉开关阵列进行了蒙特卡罗模拟,以评估错误率。模拟结果表明,与其他忆阻解决方案相比,此实现的能耗较低,每次读取操作的能耗为 65.89 fJ。该设计对工艺变化也具有很强的鲁棒性,读取误差极低,最高可达 10%。
摘要 — 为了确保这种新兴器件的可靠性,控制导电桥式随机存取存储器 (CBRAM) 中的细丝生长至关重要。在这里,我们证明了扫描焦耳膨胀显微镜 (SJEM) 可用于检测和精确定位工作中的交叉 CBRAM 器件中的导电细丝。基于 Pd/Al 2 O 3 /Ag 堆栈的柔性存储器件首先在低温下在聚酰亚胺基板上精心制作。这些器件在低压 (<2V) 下显示置位和复位操作,开/关比高于 10 4 。在低电阻状态下操作时,SJEM 振幅图像显示出单个导电细丝存在下的热点。在 50kHz 下提取的有效热扩散长度为 4.3µm,并且还证明了热膨胀信号与耗散的焦耳功率成正比。我们相信,所提出的程序为可靠性研究开辟了道路,可将其应用于任何基于细丝传导的存储器件系列。索引词——CBRAM、柔性电子、SJEM、长丝定位。
实时尖峰分类和处理对于闭环脑机接口和神经假体至关重要。具有数百个电极的高密度多电极阵列的最新发展使得能够同时记录来自大量神经元的尖峰。然而,高通道数对实时尖峰分类硬件的数据传输带宽和计算复杂性提出了严格的要求。因此,有必要开发一种专门的实时硬件,该硬件可以在高吞吐量下动态分类神经尖峰,同时消耗最少的功率。在这里,我们介绍了一种实时、低延迟尖峰分类处理器,它利用高密度 CuO x 电阻交叉开关以大规模并行方式实现内存尖峰分类。我们开发了一种与 CMOS BEOL 集成兼容的制造工艺。我们广泛描述了 CuO x 存储设备的开关特性和统计变化。为了使用交叉开关阵列实现尖峰分类,我们开发了一种基于模板匹配的尖峰分类算法,该算法可以直接映射到 RRAM 交叉开关上。通过使用合成和体内细胞外脉冲记录,我们通过实验证明了高准确度的节能脉冲分类。与基于 FPGA 和微控制器的其他硬件实现相比,我们的神经形态接口在实时脉冲分类的面积(减少约 1000 倍面积)、功率(减少约 200 倍功率)和延迟(对 100 个通道进行分类的延迟为 4.8μs)方面均有显著改进。
摘要:光子综合电路正在成为一个有前途的平台,用于加速深度学习中的矩阵乘法,利用光的固有平行性质。尽管已经提出并证明了各种方案是为了实现这种光子矩阵加速器,但由于在光子芯片上直接芯片后反向传播的困难,使用光子加速器对人工神经网络的原位培训仍然具有挑战性。在这项工作中,我们提出了一个具有对称结构的硅微孔谐振器(MRR)光学横杆阵列,该横梁允许简单的芯片反向传播,有可能使深度学习的推理和训练阶段加速。我们在Si-On-On-On-On-On-On-On-On-On-On平台上演示了一个4×4电路,并使用它来执行简单神经网络的推理任务,用于对虹膜花进行分类,从而达到了93.3%的分类精度。随后,我们使用模拟的芯片反向传播训练神经网络,并在训练后同一推理任务中达到91.1%的精度。此外,我们使用9×9 MRR横梁阵列模拟了卷积神经网络(CNN)进行手写数字识别,以执行卷积操作。这项工作有助于实现紧凑和节能的光子加速器进行深度学习。
实时尖峰分类和处理对于闭环脑机接口和神经假体至关重要。具有数百个电极的高密度多电极阵列的最新发展使得能够同时记录来自大量神经元的尖峰。然而,高通道数对实时尖峰分类硬件的数据传输带宽和计算复杂性提出了严格的要求。因此,有必要开发一种专门的实时硬件,该硬件可以在高吞吐量下动态分类神经尖峰,同时消耗最少的功率。在这里,我们介绍了一种实时、低延迟尖峰分类处理器,它利用高密度 CuO x 电阻交叉开关以大规模并行方式实现内存尖峰分类。我们开发了一种与 CMOS BEOL 集成兼容的制造工艺。我们广泛描述了 CuO x 存储设备的开关特性和统计变化。为了使用交叉开关阵列实现尖峰分类,我们开发了一种基于模板匹配的尖峰分类算法,该算法可以直接映射到 RRAM 交叉开关上。通过使用合成和体内细胞外脉冲记录,我们通过实验证明了高准确度的节能脉冲分类。与基于 FPGA 和微控制器的其他硬件实现相比,我们的神经形态接口在实时脉冲分类的面积(减少约 1000 倍面积)、功率(减少约 200 倍功率)和延迟(对 100 个通道进行分类的延迟为 4.8μs)方面均有显著改进。
关键词;UTBB 28nm FD-SOI、模拟 SNN、模拟 eNVM、eNVM 集成。2. 简介基于新兴非易失性存储器 (eNVM) 交叉开关的脉冲神经网络 (SNN) 是一种很有前途的内存计算组件,在边缘低功耗人工智能方面表现出卓越的能力。然而,eNVM 突触阵列与 28nm 超薄体和埋氧全耗尽绝缘体上硅 (UTBB-FDSOI) 技术节点的共同集成仍然是一个挑战。在模拟脉冲神经网络 (SNN) 中,输入神经元通过一电阻一晶体管 (1T1R) 突触与输出神经元互连,计算是通过突触权重将电压尖峰转换为电流来完成的 [1]。神经元将尖峰积累到预定义的阈值,然后产生输出尖峰。神经元区分和容纳大量突触和输入脉冲的能力与神经元放电阈值的电压摆幅直接相关。这主要取决于膜电容、突触电荷的净数量和低功率神经元的阈值 [2]。