摘要 - Post-Quantum密码学(PQC)将很快成为许多未来系统的标准。随着量子计算机的出现,所有基于传统不对称加密(例如RSA,ECC)的加密通信将变得不安全。定义PQC标准是快速速度进行的过程,涉及新的和很大程度上未开发的加密原语。因此,PQC算法的硬件实现的设计仍在研究中。在本文中,我们介绍了PQC的基础知识,重点是基于晶格的密码及其硬件安全问题,即侧通道和基于故障的攻击。然后,我们专注于基于同一的密码学和Sike算法。我们根据瞬态断层的电磁注入来强调通过表现出耐断层设计选择的重要性,以此为目标。最后,我们展示了一个有趣的想法,从观察到某些PQC算法具有内在的概率行为。我们认为,这种特征是一个明显的机会,它为将近似(或不精确)计算应用于PQC加密的实施铺平了道路。
简介量子计算有助于重新定义功能,将量子的原理作为叠加原理和纠缠的速度比经典系统更快。t在众多D材料科学,药物发现和ARTIF中具有巨大的潜力,但它也引入了基本密码系统。Classical public-ke such as RSA, ECC, and DSA, rely on mathe like integer factorization and discrete logar computationally difficult for classical com Quantum algorithms, such as Shor's and Gr these problems efficiently, making these sy In response to this emerging threat, the quantum-safe cryptography has become es safe cryptography aims to develop cryptogra can withstand classical and quantum comp Efforts like the National Institute of标准(NIST)量子后密码学单位在评估和耐药算法方面至关重要。
说明使用现代加密技术将R对象加密到原始向量或文件。基于密码的密钥推导与“ argon2”()。对象被序列化,然后使用“ XCHACHA20- poly1305”进行加密(),遵循RFC 8439的rfc 8439,用于认证的加密( and>)加密函数由随附的“单核”'C'库提供()。
我们研究了一个关于非本地量子状态歧视的新颖问题:非沟通(但纠缠)的玩家如何区分量子状态的不同分布?我们将此任务同时称为状态。我们的主要技术结果是证明玩家无法区分每个受独立选择的HAAR随机状态与所有接收相同HAAR随机状态的玩家。我们表明,这个问题对不元在一起的密码学具有意义,该密码学利用了无关的原则来构建在经典上无法实现的加密原则。理解不统治的加密的可行性,这是一个关键的不统一的基础之一,满足普通模型中无法区分的安全性是该地区的一个主要开放问题。到目前为止,无统治加密的现有构造要么在量子随机甲骨文模型中,要么基于新的猜想。我们利用我们的主要结果来介绍在平原模型中使用量子解密密钥的不可区分性安全性的首次构建。我们还对单分隔符的加密和泄漏 - 弹性的秘密共享显示了其他影响。这些应用提供了证据,表明同时无法区分性可能在量子密码学上有用。
通常,密码管理器(也称为钥匙链)应用程序将将其密码数据库存储在磁盘上,并由强键链密码保护。在使用时,它可能会在内存中存储数据库的“解锁”表示,从而可以为每个所需域提供密码。而不是实施完整的独立密码管理器应用程序,而是为此项目负责核心库。因此,您无需实现与密码管理器进行交互的交互式前端,也不需要实际写入磁盘的内容。相反,您将通过提供功能来序列化并将数据结构序列化到字符串表示形式来模拟这些功能,从而可以很容易地通过将这些表示形式写入磁盘来完成完整的密码管理器应用程序。
本课程的目的是为密码学提供研究生级别的介绍,并讨论其许多应用。该课程将涵盖密码学的基本原理,包括加密,身份验证,伪随机,平均案例硬度等。我们将重点关注密码学的理论基础,并讨论如何将不同的计算硬度来源转化为各种密码系统的安全性。本课程的一个主要组成部分是使用理论定义精确捕获不同的安全保证,并展示如何严格证明有关设计系统的正式定理。本课程旨在成为一个具有挑战性的理论课程。假定加密的基本知识。数学成熟度和强大的理论CS背景将是高度希望的。该课程旨在提供对现代密码学的快节奏概述,并简要介绍了后量化后安全的基本原理。前提条件是CS 435或研究生。
由于“先收集,后解密”的场景,我同意在 PQC 范围内解决机密性通常比解决真实性更为紧迫的评估。幸运的是,集成 ML-KEM(例如,作为混合解决方案)的工程权衡通常对于大多数用例都是可以接受的。不幸的是,对于 PQC 迁移范围内相对不那么紧迫的问题,情况并非如此(例如,将 ML-DSA 集成到 TLS 中通常会导致握手期间的额外往返,因为 TCP 的常用初始窗口大小也是在不同的网络层确定的)。因此,在我看来,如果可以预见 CRQC 可能在未来几年内实际实现,那么将 PQC 签名方案集成到 TLS 等协议中才是合理的权衡。我目前没有看到这种紧迫性。
版权所有©2024,由电气与电子工程师协会,Inc.。保留所有权利版权和重印许可:允许摘要借助来源。图书馆可以超出美国版权法的限制,以私下使用顾客在本卷中在第一页的底部携带代码的文章,前提有关其他复制,重印或重新出版许可,请写信给IEEE版权所有经理,IEEE服务中心,445 Hoes Lane,Piscataway,NJ 08854。保留所有权利。***这是IEEE数字库中显示的内容的打印表示形式。E-Media版本中固有的某些格式问题也可能出现在此打印版本中。IEEE目录编号:CFP2486C-POD ISBN(按需打印):979-8-3503-8037-8 ISBN(在线):979-8-3503-8036-1 ISSN ISSN:2995-0244此出版物可从:2995-0244提供的额外副本。电话:(845)758-0400传真:(845)758-2633电子邮件:curran@proceedings.com网站:www.proceedings.com