摘要审查肠道微生物组在前列腺癌中的作用是研究意义的新兴领域。但是,尚未确定单一的病因。本文的目的是检查微生物组在前列腺癌中的作用,并总结与标本收集,测序技术和结果解释中与方法相关的挑战。最近的发现在粪便采样/存储,防腐剂选项,DNA提取和测序数据库选择/硅处理方法中仍然存在重要的异质性。争论持续存在于扩增子测序中的底漆选择以及数据归一化的最佳方法。纵向微生物组分析的统计方法继续进行改进。摘要虽然方法论的标准化可能有助于在疾病癌症中的生物体鉴定方面产生更一致的结果,但由于过程中的每个步骤,这是一项艰巨的任务,因此这是一项艰巨的任务。需要进一步的可重复性和方法论研究。
本文介绍了三种儿科焦虑症的研究:广义焦虑(GAD),分离焦虑(SA)和社交焦虑症(SAD)。本文将这些疾病视为一个小组,因为大多数治疗研究都将它们固定在一起,鉴于它们的高流行和频繁合并症。文章省略了特定的恐惧症,这是第四个常见焦虑症,这表现出比文章(1)所涵盖的三种疾病的持久性和障碍率较低。第五次诊断,选择性突变,通常会与悲伤合并。因为大型临床试验仅包括有选择性武术的儿童,当他们也表现出SAD时,SAD治疗的数据在很大程度上适用于选择性突变的治疗。同样,恐慌症在成年初期很少见,青年的大型临床试验仅在与GAD,SA或SAD一起发生时包括这种情况。因此,有关这些疾病治疗的数据也可能适用于恐慌症。
摘要:恶性黑色素瘤是皮肤癌最具侵略性的形式。标准治疗方案包括手术,放射治疗,全身化疗,靶向治疗和免疫疗法。结合这些方式通常会产生更好的反应。手术适用于局部病例,有时涉及淋巴结清扫和活检,以评估疾病的传播。raviation治疗有时可以用作独立治疗或手术切除后。全身化疗虽然较低,但被用作组合治疗的一部分,或者在其他方法失败时使用。发展对系统性化学疗法和相关副作用的耐药性促使对新方法进行了进一步的研究和临床试验。在晚期黑色素瘤的情况下,可能需要一种全面的方法,结合了靶向疗法和免疫疗法,这些疗法表现出显着的抗肿瘤活性。 有针对性的疗法,包括针对BRAF,MEK,C-KIT和NRA的抑制剂,旨在阻断负责肿瘤生长的特定分子。 这些疗法表现出希望,特别是在相应突变的患者中。 组合疗法,包括BRAF和MEK抑制剂,已证明可以提高无进展的生存。但是,对抵抗和皮肤毒性的担忧突出了对密切监测的需求。 免疫疗法,利用肿瘤淋巴细胞和CAR T细胞,增强了免疫反应。 正在进行的试验继续探索CAR T细胞疗法对晚期黑色素瘤的功效。在晚期黑色素瘤的情况下,可能需要一种全面的方法,结合了靶向疗法和免疫疗法,这些疗法表现出显着的抗肿瘤活性。有针对性的疗法,包括针对BRAF,MEK,C-KIT和NRA的抑制剂,旨在阻断负责肿瘤生长的特定分子。这些疗法表现出希望,特别是在相应突变的患者中。组合疗法,包括BRAF和MEK抑制剂,已证明可以提高无进展的生存。但是,对抵抗和皮肤毒性的担忧突出了对密切监测的需求。免疫疗法,利用肿瘤淋巴细胞和CAR T细胞,增强了免疫反应。正在进行的试验继续探索CAR T细胞疗法对晚期黑色素瘤的功效。Lifileucel是一种由FDA批准的肿瘤浸润淋巴细胞疗法,已显示出晚期黑色素瘤的反应率提高了。靶向CTLA-4和PD-1的检查点抑制剂具有增强的结果。急诊IL-2疗法增强了树突状细胞,增强了抗癌免疫力。 溶瘤病毒疗法,已批准用于晚期黑色素瘤,增强了联合方法中的治疗功效。 免疫疗法具有明显的晚期黑色素瘤疗法,但其成功却有所不同,促使人们发现新药和影响结果的因素。 本综述提供了对当前黑色素瘤治疗和最近治疗进展的见解。急诊IL-2疗法增强了树突状细胞,增强了抗癌免疫力。溶瘤病毒疗法,已批准用于晚期黑色素瘤,增强了联合方法中的治疗功效。免疫疗法具有明显的晚期黑色素瘤疗法,但其成功却有所不同,促使人们发现新药和影响结果的因素。本综述提供了对当前黑色素瘤治疗和最近治疗进展的见解。
摘要:下一代测序 (NGS) 的出现促进了不同病理学中基因表达分析的基本分析策略的转变,这些分析可用于研究、药理学和个性化医疗。从基因表达阵列时代开始,曾经高度集中于单个信号通路或通路成员的研究已经变成了对基因表达的全局分析,有助于识别新的通路相互作用、发现新的治疗靶点以及建立疾病相关性图谱以评估进展、分层或治疗反应。但是,这种分析存在一些重大缺陷,无法构建完整的图景。由于缺乏对公共数据库的及时更新以及科学数据“随意”地存放到这些数据库中,大量可能重要的数据被归为“垃圾”,这不禁让人想问:“我们到底错过了多少?”这个简短的观点旨在强调 RNA 结合/修饰蛋白和 RNA 处理对我们当前使用 NGS 技术治疗癌症所带来的一些限制,以及不充分认识到当前 NGS 技术的局限性可能会对长期治疗策略产生负面影响。
肠道微生物组是一个由数万亿微生物组成的动态生态系统,在人类健康和疾病中起着至关重要的作用。通过复杂的分子机制,微生物组影响消化、调节免疫反应、影响新陈代谢,并通过肠脑轴与中枢神经系统相互作用。菌群失调或微生物失衡与许多慢性疾病有关,这凸显了对微生物-宿主相互作用有更深入的了解的必要性。本期特刊旨在揭示肠道微生物与其宿主之间的分子串扰,探索微生物组对体内平衡、疾病发病机制和潜在治疗策略的贡献。欢迎提交以下主题的文章,但不限于:- 肠道微生物组和宿主健康;- 疾病发病机制中的微生物组;- 微生物组对免疫的调节;- 微生物组驱动的疗法;- 多组学和先进方法;- 环境和生活方式对肠道的影响
噪音污染被恰当地描述为现代瘟疫之一。[1] 由于嘈杂的环境会对健康产生许多不利影响,从睡眠障碍到心血管疾病,减少人类接触过多噪音对于居住在城市的大量人口的公共健康至关重要。 关于吸音材料,最佳选择取决于预期的声音频率范围; 衰减高频声波的解决方案依赖于与极低频噪声解决方案完全不同的吸收机制。 在室内,最常用的吸音材料本质上是多孔的,因为它们能够以相对较薄的层有效吸收中高频声音。 市场上常见的多孔吸收材料,目标是在 350 Hz 以上吸收超过 90%,包括玻璃棉和矿棉以及由三聚氰胺或聚氨酯制成的吸音泡沫。 在这里,我们回顾了气凝胶的声学特性,并展示了它们挑战和超越当前市场标准的吸收特性的巨大潜力,无论我们谈论的是气凝胶在声学和声学方面的性能。
个性化医学可能是现代医学中最有希望的领域。这种方法试图根据个人患者特征来优化疗法和患者护理。它的成功很大程度上取决于疾病的表征及其进化的方式,患者的分类,其随访和治疗方法可以优化。因此,个性化医学必须结合创新的工具来测量,集成和建模数据。朝着这一目标,临床代谢组学似乎非常适合获取相关信息。的确,代谢组学的签名为患者对病理学和/或治疗的反应,提供预后和诊断生物标志物并改善治疗结果而对患者进行分层的关键见解。但是,将代谢组学从实验室研究转换为临床实践仍然是一项挑战。核磁共振光谱(NMR)和质谱法(MS)是测量代谢组的两个关键平台。NMR具有临床代谢组学至关重要的几个优点和特征。的确,NMR光谱本质上非常健壮,可重复,无偏,定量,在结构分子水平上提供信息,几乎不需要样品制备和减少数据处理。nmr也非常适应大型队列,多点线和纵向研究的测量。本综述着重于在临床代谢组学和个性化医学背景下NMR的潜力。从临床水平上基于NMR的代谢组学的当前状态开始,并强调其优势,劣势和挑战,本文还探讨了如何与最初的“反对派”或“竞争”,NMR和MS远距离整合,并且在样本分类和生物标记方面表现出了极大的互补性。最后,观点讨论提供了对当前方法论发展的见解,这些发展可能显着提高NMR,作为用于临床应用和护理点诊断的更加紧密,敏感且易于使用的工具。由于这些进步,NMR具有强大的潜力,可以加入目前在临床环境中使用的其他分析工具。
肥胖和超重已经变得越来越重要,影响了美国70%以上的成年人口。这些条件是由包括遗传,行为,环境和医疗影响的因素组合引起的。肥胖是心血管和代谢疾病的主要危险因素。针对肥胖者的全面治疗计划必须认识到疾病的慢性性质,并提供减轻体重和长期心脏代谢益处的策略。在过去的几十年中,已经实施了多种治疗选择来解决体重减轻,食欲调节和热量支出,目的是减轻肥胖症的负担并改善心血管结局。肥胖症的药理学治疗主要集中在食欲和食物摄入行为的中心调节上。引入肠血凝素激动剂进行肥胖治疗的引入了心脏代谢健康的新时代,具有多核心的机制,可实现体重减轻,血糖控制,降低心血管死亡率和其他代谢益处。本评论探讨了当前的药理选择和肥胖治疗的未来。
癌症是全球首要死亡原因,2020 年死亡人数接近 1000 万人 (1) 。在尼泊尔,2020 年新发病例、死亡和患病人数(5 年)分别为 20508 人、13629 人和 36909 人。肺癌(12.2%)、宫颈癌(10.9%)和乳腺癌(9.6%)是三种最常见的癌症部位 (2) 。几乎所有患有这些癌症的患者在治疗期间的某个阶段都需要放射治疗。由于尼泊尔的癌症登记系统不够完善,世卫组织提供的数据可能不准确。2018 年,国家卫生研究委员会启动了基于人口的癌症登记处 (PBCR),覆盖了尼泊尔约 20% 的总人口。根据 Poudel 等人的研究,从 2003 年到 2013 年,男性和女性的癌症发病率均有所增加 (3) 。发病率的增加将给本已负担过重的辐射设施带来额外压力,使情况更加恶化。
纳米粒子(NPs)具有稳定性、生物相容性、血液循环、免疫原性和控制药物释放的能力,已被广泛应用于疾病治疗中的药物输送。由于吞噬细胞的特性,NPs在体内可以被吞噬细胞优先吸收,实现吞噬细胞靶向药物输送而不影响其他细胞的功能,成为药物输送的新方向。吞噬细胞,例如巨噬细胞,是最重要的先天免疫细胞,参与各种炎症相关疾病的病理过程,使巨噬细胞成为开发新型诊断成像和疾病治疗的重要靶点。因此,越来越多的研究将NPs用于巨噬细胞靶向药物输送。在这篇综述中,我们介绍了目前针对特定巨噬细胞靶向的NPs的改造策略及其在炎症疾病中的应用,为未来开发/优化巨噬细胞靶向NPs提供基础。