深度学习的最新进展提高了皮层下脑结构的分割精度,这将有助于许多神经系统疾病的神经影像学研究。然而,现有的大多数基于深度学习的神经影像学方法并没有研究分割极小但重要的脑区(如杏仁核亚核)时存在的具体困难。为了解决这一具有挑战性的任务,我们开发了一个双分支扩张残差 3D 全卷积网络,该网络具有并行卷积,以提取更多全局背景信息并通过保持一个与感兴趣区域 (ROI) 大小相同的小感受野来缓解类别不平衡问题。我们还在并行和串行中进行了多尺度特征融合,以补偿卷积过程中潜在的信息丢失,这对小物体来说非常重要。残差连接实现的串行特征融合通过提出的自上而下的注意力引导细化单元得到进一步增强,其中高分辨率低级空间细节被选择性地集成以补充高级但粗略的语义信息,从而丰富最终的特征表示。因此,与其他基于深度学习的方法相比,我们的方法产生的分割在体积和形态上都更准确。据我们所知,这项工作是第一个以深度学习为目标的杏仁核亚区域方法。我们还证明了使用周期一致的生成对抗网络 (CycleGAN) 协调多站点 MRI 数据的可行性,并表明我们的方法可以很好地推广到从多个中心收集的具有挑战性的创伤性脑损伤 (TBI) 数据集。这似乎是一种有前途的图像分割策略,可用于多站点研究和增加显著脑病理形态学变异性。
摘要。目的:本研究提出了一种新颖的回顾性运动减少方法,即运动伪影 11 无监督解缠生成对抗网络 (MAUDGAN),该方法可减少来自肿瘤和转移性脑图像的运动伪影。MAUDGAN 使用多模态多中心 3D T1- 13 Gd 和 T2 流体衰减反转恢复 MRI 图像进行训练。方法:在 k 空间中为 3D T1-Gd MRI 图像模拟具有不同伪影 14 级别的运动伪影。MAUDGAN 由使用残差块构建的两个生成器、两个鉴别器和两个特征提取器网络组成。生成器将图像从内容空间映射到伪影空间,反之亦然。另一方面,鉴别器试图 17 区分内容代码以学习无运动和运动损坏的内容空间。结果:我们将 MAUDGAN 与 CycleGAN 和 Pix2pix-GAN 进行了比较。从定性上讲,MAUDGAN 可以消除软组织对比度最高的运动,而不会增加空间和频率失真。从定量上讲,我们报告了六个指标,包括归一化均方误差 (NMSE)、结构相似性指数 (SSIM)、多尺度结构相似性指数 (MS-SSIM)、峰值信噪比 (PSNR)、视觉信息保真度 (VIF) 和多尺度梯度幅度相似性偏差 (MS-GMSD)。MAUDGAN 获得了最低的 NMSE 和 MS-GMSD。平均而言,所提出的 MAUDGAN 重建的无运动图像具有最高的 SSIM、PSNR 和 VIF 值以及可比的 MS-SSIM 值。结论:MAUDGAN 可以在多模态框架下从 3D T1-Gd 数据集中分离出运动伪影。运动减少将改善自动和手动 26 后处理算法,包括自动分割、配准和引导治疗(例如 27 放射治疗和手术)的轮廓勾画。28
生成AI目前是技术中最热门的话题。本动手指南教机器学习工程师和数据科学家如何使用Tensorflow和Tensorflow和Keras从头开始创建令人印象深刻的生成深度学习模型,包括变异自动编码器(VAE),生成对抗网络(GAN),变形金刚,变形金刚,正常流量,基于能量的模型,基于能量的差异模型,以及基本的架构架构。Through tips and tricks, you'll learn how to make your models more efficient and creative.Discover how VAEs can change facial expressions in photosTrain GANs to generate images based on your own datasetBuild diffusion models to produce new varieties of flowersTrain your own GPT for text generationLearn how large language models like ChatGPT are trainedExplore state-of-the-art architectures such as StyleGAN2 and ViT-VQGANCompose polyphonic music使用变形金刚和博物馆构成生成世界模型如何将增强学习任务求解到诸如dall.e 2,Imagen和稳定扩散等多模型模型中,这本书还探讨了生成AI的未来及其具有竞争优势的潜力。生成AI目前是技术中最热门的话题。本动手指南教机器学习工程师和数据科学家如何使用Tensorflow和Keras从头开始创建令人印象深刻的生成深度学习模型,包括VAE,gans,gans,transformers,“标准化流量”,“基于能量”的模型,基于能量的模型以及扩散的扩散模型。这本书以基本的深度学习概念和高级体系结构为基本的深度学习概念开始。和概率理论,正如某些模型使用数学符号描述的那样。Through tips and tricks, you'll learn how to make your models more efficient and creative.Discover how VAEs can change facial expressions in photosTrain GANs to generate images based on your own datasetBuild diffusion models to produce new varieties of flowersTrain your own GPT for text generationLearn how large language models like ChatGPT are trainedExplore state-of-the-art architectures such as StyleGAN2 and ViT-VQGANCompose polyphonic music使用变形金刚和博物馆构成生成世界模型如何将增强学习任务解决成多模型,例如Dall.e 2,Imagen和稳定的扩散,这本书还深入研究了生成AI的未来及其具有竞争优势的潜力。要开始使用Python,请访问Learningpypython.org获取免费资源,这些资源将帮助您发展足够的知识来与本书中的示例合作。对线性代数(矩阵乘法等)有牢固的了解也很重要另外,请确保您有一个可以从GitHub存储库中运行代码示例的环境。不用担心您是深度学习的新手 - 您不需要昂贵的硬件即可像GPU一样开始培训模型。实际上,在投资硬件之前了解基础知识更为重要。本书将向您展示如何在自己的数据上培训自己的生成模型,而不是依靠预训练的模型。我们将从第一原则中深入研究这些模型的架构和设计,因此您可以完全了解它们如何使用Python和Keras进行编码。科学家们正在破解代码以复制一些最具开创性的生成深度学习模型,例如变化自动编码器,生成的对抗性网络(GAN),编码器模型和世界模型。在本文中,专家David Foster带领读者从深度学习的基础上到彻底改变该领域的出血 - 边缘算法的旅程。通过分享技巧和技巧,您将深入了解如何优化模型以提高性能和创造力。动手实践实用的GAN示例,例如Cyclegan for Style Transfer和Musegan for Music Generation。学习如何制作复发性生成模型来生成文本,并使用注意机制改进它们。探索生成模型如何授权代理在加强学习框架内处理复杂的任务。最后,深入研究了基于变压器的模型,例如Bert和GPT-2,以及Progan和StyleGan等图像生成技术。