hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
一条消息被循环向右旋转,旋转的位数等于该消息中前面的数据字的数量,然后所有得到旋转的数据字使用模 2 算法对每个位求和(无进位),和应为零。«
客户日益增长的不满情绪催生了一种新现象:连续流失用户。这一群体表现出品牌忠诚度的波动,随着内容兴趣的变化,他们会周期性地订阅和取消订阅平台。我们调查的受访者中,有 59% 属于这一群体,他们为了追求想要的内容,经常取消和重新订阅服务。
在1984年,迈克尔·贝瑞(Michael Berry)报告了一项被证明具有令人惊讶的应用程序的发现。Berry [1]表明,如果量子机械系统的哈密顿量依赖于以绝热方式循环变化的外部参数,则仅取决于汉密尔顿人的每个非排定特征态,仅根据参数空间的几何形状而获得相位。如今,浆果阶段在几乎每个现代物理学的每个分支[2,3]中是一个核心重要性的概念,包括物质拓扑状态[4-6]和量子计算[7-10]的近期领域。在[1]发表后几年,Aharonov和Anandan [11]扩展了Berry的作品,表明几何阶段可以与每个周期性发展的系统相关联,而不仅仅是那些能够绝步地发展的系统。尽管通常称为非绝热阶段,但Aharonov-Anandan几何阶段也被定义为绝热的系统,然后与浆果阶段一致。aharonov-anandan阶段既不取决于进化时间,也不取决于系统的发展速率。然而,遵循的路径循环发展为获得非平凡的aharonov-anandan阶段,不能任意短。在本文中,我们根据其aharonov-anandan阶段得出了状态封闭曲线的Fubini研究长度的下限。然后,从Mandelstam-Tamm量子速度限制的几何解释开始[12,13],我们在生成指定的Aharonov-Anandan相的时间上得出了一个紧密的下限。我们已经组织了如下的论文。有趣的是,Margolus-Levitin量子速度极限[14]也连接到Aharonov-Anandan相。使用Margolus-Levitin量子速度限制的几何描述[15],我们在生成Aharonov-Anandan相的时间上得出了另一个紧密的下限。通常,量子速度限制是对以指定方式转换量子系统所需的时间的基本估计[16,17]。所宣布的,此处得出的进化时间估计源自Mandelstam-Tamm和Margolus-Levitin量子速度限制的几何特征[12,14,15,18 - 18 - 21]。在第2节中,我们回顾了aharonov-anandan几何阶段的定义,在第3节中,我们对动态驱动的系统驱动并讨论了Margolus- levitin类型估计的某些特性,并由时间独立的Hamiltonians驱动。Margolus-Levitin类型的估计值不会直接扩展到具有时间依赖的汉密尔顿人的系统[21],而是Mandelstam-
如果您的组织正在努力实现碳目标,则BSI基于最佳实践标准提供了一系列解决方案,这些解决方案将在您处于任何阶段的任何阶段为您提供支持。BSI与您合作,通过提供培训和资格,认证和验证您的碳计划来评估,监视,减少,减轻和报告您的进度。当您继续成熟程序并达到里程碑时,可以循环使用此过程,“报告”通常不会成为道路的尽头。但是,它确实表明您的组织是降低碳的进一步阶段。
伺服液压试验机的典型应用包括低周疲劳试验。在低周疲劳试验期间,材料在特定(通常升高)温度下循环加载,直到发生轻微塑性变形。在这种类型的负载下,样品(材料)仅承受几千次负载变化。在此过程中,对试验机和机器控制器的要求特别高。在从弹性变形到塑性变形的过渡中,样品的刚度发生剧烈变化,控制器必须非常快速地做出反应,例如保证恒定的应变增加率。在这里,试验机的非常高的刚度起着至关重要的作用。
增材制造过程中的冷加工层通过在预先设计的内部增强域中赋予复杂的全局完整性来提高韧性。由于循环打印和喷丸形成的成分高度异质,因此很难通过映射这些域中的全局完整性来理解机械行为。超声波是一种快速、无损的工具,可以测量对微观结构和残余应力的异质组织敏感的全局完整性。这项工作在将激光工程净成型 (LENS) 与 420 不锈钢上的激光喷丸循环结合后,研究了压缩行为,并通过垂直于构建方向的超声波速度和衰减测量全局完整性。© 2020 CIRP。由 Elsevier Ltd. 出版。保留所有权利。
天然/合成混合增强聚合物复合材料具有显著的特性,而且大多数由这些材料制成的部件都会受到循环载荷,因此在结构应用中,其应用的市场份额正在迅速增长。它们的疲劳性能受到了广泛关注,因为由于纤维之间的协同作用,预测它们的行为是一项挑战。这项研究的目的是表征六层凯夫拉纤维与一层编织洋麻增强环氧树脂混合而成的拉伸、压缩和拉伸-压缩疲劳行为,重量分数为 35%。进行了疲劳试验,并以 60%、70%、80% 和 90% 的极限压缩应力进行循环加载。结果完整描述了拉伸和压缩性能,可用于预测疲劳引起的失效机制。