深部脑刺激 (DBS) 是一种成熟的神经外科手术,用于治疗运动障碍,也正在用于治疗难治性精神疾病。本综述强调了 DBS 模拟和数据分析的重要考虑因素。近年来,有关 DBS 的文献数量大幅增加,本文旨在确定该领域的重要趋势。在 DBS 计划、手术和随访期间,会为每位患者创建几个大型数据集,很明显,对此类数据的任何组分析都是一个大数据分析问题,必须小心处理。本综述旨在从神经工程的角度提供当前 DBS 技术、技术辅助和新兴工具的更新和概述,重点关注患者特定的电场 (EF) 模拟、组分析和 DBS 领域的可视化。示例来自包括我们自己的研究在内的最新文献。这项工作回顾了 EF 模拟、纤维束成像、深部脑解剖模板和组分析的不同分析方法。我们的分析强调,DBS 中的组分析是一个复杂的多层次问题,所选参数将对结果产生很大影响。只有当 EF 模拟、纤维束成像结果和派生的脑图谱基于尽可能多的患者特定数据时,DBS 分析才能提供临床相关信息。DBS 研究的一个趋势是创建更先进、更直观的复杂分析结果可视化,以适应临床环境。
精神科状况是全世界疾病的主要原因[1]。估计表明,患有重度抑郁症(MDD)和强迫症(OCD)(OCD)的患者中有20%以上,常规治疗方法(例如药物和谈话疗法)具有有限的疗效,并且复发率很高[2-4]。寻找更有效的治疗方法,一些研究人员转向了深脑刺激(DBS),这是一种用于治疗诸如帕金森氏病等运动疾病的干预措施[5,6]。使用植入大脑深处的电子和脉搏发行器(类似于心脏起搏器)植入锁骨下方的脉冲机器,DBS将电刺激传递给大脑靶标。特定目标取决于所治疗的状况;例如,用于必需震颤的DBS通常靶向腹侧介导丘脑[7]。首次在1950年代用作消融脑结构的定位工具,DBS现在已用于治疗全球超过100,000名患者的运动障碍[7-9]。自1999年对强迫症的DBS进行了首次研究以来[10],DBS对精神疾病的试验(被称为“ DBS的最新边界” [5,11])产生了有希望的结果[12-18]。DBS还提出了与隐私和神经数据的访问以及DB对个人身份,自治和代理机构的潜在影响相关的道德问题[19,20]。早期定性道德研究的发现表明,社会关系对理解和评估精神病学DBS的道德意义的重要性。在2015年的一项研究中,精神病学DBS接受者报告说,家庭成员在自己的症状上经常注意到他们的症状变化[21]。2016年对15个DBS受体的焦点小组研究将“关系效应”确定为四个中心主题之一[22]。考虑到(a)家庭成员支持通常是DBS试验参与的纳入标准的事实[11],并且(b)关于家庭成员在临床试验中的适当作用的伦理辩论(例如,关于如何在预防强制或操纵患者的同时参与家庭成员的辩论),尤其是当试验涉及“弱势人群”时,例如
将在以下计数器的保证金帐户中允许购买和保证金充值,因为由于DBS银行的单一反向集中限制或DBS银行限制了DBS Bank的完全利用,因此它们受到限制。这些计数器将优先考虑力量。
EEP脑刺激(DBS)是一种公认的神经调节形式,用于治疗各种神经系统疾病。DBS在1996年获得了FDA的第一次批准,用于治疗与必需震颤和帕金森氏病(PD)相关的震颤,然后在2002年治疗其他CART-NAL运动症状。从那时起,DBS的适应症已迅速扩展到包括肌张力障碍,耐药性癫痫和精神病疾病。此外,治疗几乎没有禁忌症。较差的DBS候选人包括无法忍受手术或患有痴呆症或任何活跃的精神疾病的人。1对于DBS的作用机械性,尽管确切的过程在很大程度上是未知的,但已经假定了几种理论。从根本上讲,DBS向神经元电路提供直接的电刺激,该电路极限
帕金森病 (PD) 是一种渐进性神经退行性疾病,具有运动和非运动症状。深部脑刺激 (DBS) 是一种安全可靠的神经外科对症疗法,适用于符合条件的晚期疾病患者,这些患者接受的药物治疗无法充分控制症状并改善生活质量,或多巴胺能药物会引起运动障碍等严重副作用。DBS 可根据患者的症状进行量身定制,并针对基底神经节-丘脑回路中的各个节点进行治疗,这些节点负责介导疾病的各种症状;丘脑DBS对震颤最有效,苍白球DBS对僵硬和运动障碍最有效,而丘脑底核(STN)的DBS可以同时治疗震颤、运动不能、僵硬和运动障碍,并且即使对于晚期患者也可以减少药物剂量,这使其成为DBS的首选目标。但是,STN中的DBS假设患者年龄不太大,没有认知下降或相关抑郁,并且没有表现出严重和
丘脑底核 (STN) 的深部脑刺激 (DBS) 是治疗帕金森病 (PD) 运动症状的有效方法。然而,介导症状缓解的神经元素尚不清楚。先前的研究得出结论,直接光遗传学激活 STN 神经元对于缓解帕金森病症状既不是必要的也不是充分的。然而,用于细胞特异性激活的通道视紫红质-2 (ChR2) 的动力学太慢,无法跟上有效 DBS 所需的高速率,因此 STN 神经元的激活对 DBS 治疗效果的贡献仍不清楚。我们使用超快视蛋白 (Chronos) 量化了单侧 6-羟基多巴胺 (6-OHDA) 损伤后雌性大鼠的光遗传学 STN DBS 对行为和神经元的影响。 130 pps 的光遗传 STN DBS 减少了病理性旋转并改善了前肢踏步缺陷,类似于电 DBS,而使用 ChR2 的光遗传 STN DBS 不会产生行为效应。与电 DBS 一样,光遗传 STN DBS 表现出对刺激率的强烈依赖性;高刺激率可缓解症状,而低刺激率无效。高刺激率光遗传 DBS 可增加和减少 STN、苍白球外部 (GPe) 和黑质网状部 (SNr) 中单个神经元的放电率,并破坏 STN 和 SNr 中的 b 波段振荡活动。高速率光遗传学 STN DBS 确实可以通过减少 STN 相关神经回路中的异常振荡活动来改善帕金森病运动症状,这些结果强调了视蛋白的动力学特性对光遗传学刺激的效果有很大影响。
深部脑刺激 (DBS) 自 1980 年代以来一直用于治疗运动障碍。与病变疗法相比,DBS 有几个明显的优势。它是可逆的,并且可以提供更好的症状缓解,并且并发症比病变少。DBS 通过植入后调整治疗参数来产生最大疗效,并且可以双侧应用,而双侧病变通常会导致很高的副作用风险(Okun 和 Vitek,2004)。DBS 最先用于治疗帕金森病,是 FDA 批准的帕金森病 (PD)、特发性震颤和肌张力障碍的治疗方法。据估计,美国约 150,000 名运动障碍患者植入了 DBS 设备(Benabid 等人,1987)。这一成功鼓励了 DBS 在各种神经精神疾病中的应用。最近,DBS 已被批准用于治疗强迫症和难治性癫痫。由于上述大多数神经精神疾病的结果不一致,使用 DBS 治疗重度抑郁症(Dandekar 等人,2018 年)和阿尔茨海默病(Lozano 等人,2016 年)的临床试验效果有限。治疗的几个关键方面仍未解决,特别是根据个体解剖和病理生理差异,应如何、在何处和何时进行刺激。本综述讨论了癫痫或帕金森病患者的这些因素。
摘要:干斑(DBS)的收集促进了新生儿筛查,以了解世界各地医疗保健系统中各种罕见但非常严重的条件。可从DBS样品中取出不同大小(1.5–6 mm)的子拳头,以用作一系列生化测定的输入。DNA测序工作流中的进步允许直接从外周血,唾液和DBS等输入中生成全基因组测序(WGS)文库。我们比较了从直接从DBS生成的库获得的WGS指标与从外周血提取的DNA产生的库,这是这种类型的测定的标准输入。我们通过更改打孔号和大小作为测定的输入来探索DBS作为WGS的输入的灵活性。我们表明,WGS库可以从各种DBS输入中成功生成,包括单个3 mm或6 mm的冲孔,在检测基因变异的许多重要性指标中都观察到了同等的数据质量。我们观察到DBS和周围血管提取的DNA的性能在检测可能的病原基因变异的样品中,从患有囊性纤维化或苯基酮尿尿的个体中的样品中没有差异。wgs可以直接从DBS进行,这是快速发现临床相关的,疾病的基因变异的有力方法。
丘脑下核(STN)深脑刺激(DBS)是一种已建立的晚期帕金森氏病(PD)的神经外科治疗,涉及植入导致精确地向大脑提供电刺激(Benabid等人。,1991; Limousin等。,1998; Coenen等。,2008年; Kalia等。,2013年)。最佳DBS设置的识别对于最大化治疗结果至关重要。 但是,即使在准确的铅定位时,此仍然耗时,并且高度依赖于程序员专业知识(Volkmann等人。 ,2002年; Picillo等。 ,2016年; Lange等。 ,2021)。 传统上,DBS设置是通过单极审查评估选择的,其中通过系统地评估每个触点刺激时引起的临床响应来识别最佳DBS触觉。 随着新技术的出现,例如定向线索和多个独立的电流控制(MICC)刺激器,编程参数空间已成倍扩展。 该技术允许提高刺激精度,从而优化了DBS治疗,但以大大增加编程的复杂性和时间为代价(Wagle Shukla等人。 ,2017年; Santaniello等。 ,2018年; Koeglsperger等。 ,2019年)。 最后,并非所有症状都会立即对DBS做出反应,这意味着临床医生可能无法在一次临床访问期间确定最佳环境(Wagle Shukla等人。 ,2017年)。 因此,并非所有DBS患者都接受最佳治疗。 ,2015年; Lange等。最佳DBS设置的识别对于最大化治疗结果至关重要。但是,即使在准确的铅定位时,此仍然耗时,并且高度依赖于程序员专业知识(Volkmann等人。,2002年; Picillo等。,2016年; Lange等。,2021)。传统上,DBS设置是通过单极审查评估选择的,其中通过系统地评估每个触点刺激时引起的临床响应来识别最佳DBS触觉。随着新技术的出现,例如定向线索和多个独立的电流控制(MICC)刺激器,编程参数空间已成倍扩展。该技术允许提高刺激精度,从而优化了DBS治疗,但以大大增加编程的复杂性和时间为代价(Wagle Shukla等人。,2017年; Santaniello等。,2018年; Koeglsperger等。,2019年)。最后,并非所有症状都会立即对DBS做出反应,这意味着临床医生可能无法在一次临床访问期间确定最佳环境(Wagle Shukla等人。,2017年)。因此,并非所有DBS患者都接受最佳治疗。,2015年; Lange等。成像为指导编程的潜在解决方案。这种方法涉及与相关核有关的铅和不同接触的可视化。研究表明,与传统编程相比,2021; Malekmohammadi等。,2022)。最近,图像引导的方法还可以看到DBS诱导的电刺激传播,从而使程序员更清楚地表明刺激区域的理论指示,例如
方法:在先前的受试者内部,横断面研究中,我们评估了PD患者对Sleep acroarchitectural特征的低(60 Hz)和常规高(≥130Hz)频率STN DBS设置的影响。在本期,探索性分析中,我们进行了多个核能(PSG)衍生的定量脑电图(QEEG)评估,其中15名患有PD的人在研究参与前13.5个月接受了STN DBS治疗的PD患者。14名参与者的单侧DB和1个具有双侧DBS。在三个不同的PSG连续晚上,在三种不同的DBS条件下评估了参与者:DBS OFF,DBS低频(60 Hz)和DBS高频(≥130Hz)。这项研究的主要目的是使用反复测量方差分析来研究三个DBS条件下睡眠纺锤体密度的变化。此外,我们研究了与睡眠QEEG功能相关的各种次要结果。对于所有参与者,PSG派生的EEG数据进行了精心的手动检查,排除了受运动伪像影响的任何段。在伪影排斥反应后,对额叶和中心线进行了睡眠QEEG分析。措施包括慢波(SW)和主轴密度和形态特征,SW主轴相位振幅耦合以及在非快速眼运动(NREM)睡眠期间的光谱功率分析。