摘要。由于各种物理降解因子和检测到的少量计数,从低剂量正电子发射断层扫描(PET)扫描中获得了高质量的图像是具有挑战性的。基于高级分布学习的生成模型(一种基于高级分布学习的生成模型)的转化扩散概率模型(DDPM)显示了各种计算机视觉任务的有希望的性能。但是,目前DDPM主要以2D模式进行研究,该模式的限制是pet图像denoising的局限性,因为通常以3D模式获取,重建和分析PET。在这项工作中,我们提出了一种用于PET Image DeNoising的3D DDPM方法,该方法采用3D卷积网络来训练得分函数,并启动网络学习3D分布。使用从西门子传记视觉Quadra扫描仪(轴向视野> 1m)获取的总体体18 F -FDG PET数据集来评估3D DDPM方法,因为这些总体数据集需要的3D操作最多可从不同的轴向液体中利用丰富的信息。所有模型均在1/20低剂量图像上训练,然后在1/4、1/20和1/50低剂量图像上进行评估。实验结果表明,在定性和定量评估中,3D DDPM明显优于2D DDPM和3D UNET,能够从低质量PET图像中恢复更精细的结构和更准确的边缘轮廓。此外,当训练和测试数据之间存在噪声水平不匹配时,3D DDPM显示出更大的鲁棒性。最后,就不确定性而言,将3D DDPM与2D DDPM进行比较,发现3D DDPM对可重复性的信心更高。
a b s t r a c t generativ e Adveranial网络(GAN)经常用于天文学中来构建数值模拟的模拟器。然而,培训甘斯可能会被证明是一项不稳定的任务,因为它们容易出现不稳定,并且经常导致模式崩溃问题。相反,扩散模型还具有在没有对抗训练的情况下生成高质量数据的能力。它在几个自然图像数据集方面表现出了优势。在这项研究中,我们通过一组来自散射变换的强大摘要统计数据进行了降级扩散概率模型(DDPM)(DDPM)(DDPM)(DDPM)(最坚固的gan类型之一)之间的定量比较。特别是,我们利用这两个模型来生成21 cm亮度温度映射的图像,作为一个案例研究,基于天体物理参数有条件地研究,这些参数与宇宙复离的过程相关。使用我们的新fr`echet散射距离(FSD)作为e v aluation指标,以定量比较生成模型和仿真之间的样本分布,我们证明了DDPM在各种训练集的大小上都优于stylegan2。通过Fisher的预测,我们证明,在我们的数据集中,StyleGAN 2以各种方式崩溃,而DDPM产生了更强大的生成。我们还探讨了无分类指导在DDPM中的作用,并仅在训练数据受到限制时才显示出对非零指导量表的偏好。我们的发现表明,扩散模型在生成准确的图像中提供了一种有希望的替代品。这些图像随后可以提供可靠的参数约束,尤其是在天体物理学领域。
近年来,深度生成模型对工程和科学产生了深远的影响,彻底改变了图像和音频生成等领域,并提高了我们建模科学数据的能力。特别是,去噪扩散概率模型 (DDPM) 已被证明可以准确地将时间序列建模为复杂的高维概率分布。实验和临床神经科学也将受益于这一进步,因为准确建模神经生理时间序列,例如脑电图 (EEG)、皮层电图 (ECoG) 和局部场电位 (LFP) 记录及其合成生成可以实现或改进各种神经科学应用。在这里,我们提出了一种使用 DDPM 建模多通道和密集采样的神经生理记录的方法,该方法可以灵活地应用于不同的记录模式和实验配置。首先,我们表明 DDPM 可以为各种数据集 11 生成逼真的合成数据,包括不同的记录技术(LFP、ECoG、EEG)和物种(大鼠、猕猴、人类)。DDPM 生成的时间序列准确捕获单通道和多通道统计数据,例如频谱和 13 相位幅度耦合,以及细粒度和数据集特定特征,例如尖锐的波纹。14 此外,可以根据实验条件或大脑状态等其他信息生成合成时间序列。我们展示了 DDPM 在几种神经科学特定分析中的实用性和灵活性,例如大脑状态分类和缺失通道的归纳以改进神经解码。总之,DDPM 可以作为神经生理记录的精确生成模型,并且在概率生成合成时间序列以用于神经科学应用方面具有广泛的实用性。20
本文研究了分解生成模型如何利用(未知)低维结构来加速采样。着眼于两个主流采样器 - denoing Di ti timion隐式模型(DDIM)和denoing Di ti usion概率模型(DDPM) - 并进行准确的分数估计值,我们假设他们的迭代复杂性不超过某些二号差异的距离(最高限度),而K/ε(最高限度)是二的差异,是ε的依赖性,是ε的依赖性,ε是ε的范围。 分配。我们的结果适用于广泛的目标分布家庭,而无需平滑度或对数洞穴假设。此外,我们开发了一个下限,这表明Ho等人引入的系数的(几乎)必需。(2020)和Song等。(2020)在促进低维适应性方面。我们的发现提供了第一个严格的证据,证明了DDIM型采样器对单个低维结构的适应性,并改善了有关总DDPM关于总变化收敛性的最先进的DDPM理论。
•源自[Ho等,DDPM,Neurips 2020]和[Sohl-Dickstein等人,使用非平衡热力学的深度无监督学习,ICML 2015]
去噪扩散概率模型 (DDPM) 最近在图像合成中表现出色,并在各种图像处理任务中得到广泛研究。在这项工作中,我们提出了一种用于生成三维 (3D) 医学图像的 3D-DDPM。与以前的研究不同,据我们所知,这项工作首次尝试研究 DDPM 以实现 3D 医学图像合成。我们的研究检查了脑肿瘤高分辨率磁共振图像 (MRI) 的生成。通过在半公开数据集上的实验对所提出的方法进行了评估,定量和定性测试都显示出有希望的结果。我们的代码将在 https://github.com/DL-Circle/3D-DDPM 上公开提供。关键词:扩散模型、图像合成、磁共振成像 (MRI)。
扩散模型是基于马尔可夫过程的生成模型家族。在其前进过程中,他们逐渐向数据添加噪声,直到变成完整的噪声为止。在向后过程中,数据逐渐从噪声中逐渐发出。在本教程论文中,充分说明了扩散概率模型(DDPM)。详细简化了其可能性的变异下限,分布的参数和扩散模型的损耗函数。引入了对原始DDPM的一些模型,包括非固定的协方差矩阵,减少梯度噪声,改善噪声时间表以及非标准高斯噪声分布和条件扩散模型。最后,解释了噪声表位于连续域中的随机差异方程(SDE)的连续噪声时间表。
图2:基于扭转角的主成分分析(PCA),TRP型栅格和α-突触核蛋白的自由能表面(FES)。(a)和(d)分别沿TRP-CAGE和α-类核蛋白的整个分子动力学(MD)模拟数据集沿第一个两个主要成分(PC-1和PC-2)显示了2D FES图。(b)和(e)使用仿真数据的子集描绘了FES图,相当于TRP -cage的总数据的10%,而α-突触核蛋白的50%。与完整数据集相比,这些子集突出了采样自由能表面的稀疏性。(c)和(f)介绍了由DDPM训练的模型产生的FES图,这些模型在还原的子集上进行了训练。值得注意的是,DDPM生成的FES图与完整数据集的FES相似,并有效地采样了(b)和(e)中观察到的稀疏区域。
对想象语音的解码EEG信号是由于数据的高维质和较低的信噪比,这是一项挑战任务。近年来,降解扩散概率模型(DDPM)已成为各种领域中表示学习的承诺方法。我们的研究提出了一种新的方法,用于使用DDPMS和一个有条件的自动代码器来解码EEG信号,以进行想象的语音。结果表明,与传统的机器学习技术和基线模型相比,差异可以显着提高对想象语音的EEG信号的准确性。我们的发现表明,DDPM可以成为脑电信号解码的有效工具,并具有潜在的暗示,以开发脑部计算机界面,从而通过想象的语音使通信能够进行通信。索引术语:无声沟通,语音识别,电子脑摄影,想象的语音,脑部计算机界面
对想象语音的解码EEG信号是由于数据的高维质和较低的信噪比,这是一项挑战任务。近年来,降解扩散概率模型(DDPM)已成为各种领域中表示学习的承诺方法。我们的研究提出了一种新的方法,用于使用DDPMS和一个有条件的自动代码器来解码EEG信号,以进行想象的语音。结果表明,与传统的机器学习技术和基线模型相比,差异可以显着提高对想象语音的EEG信号的准确性。我们的发现表明,DDPM可以成为脑电信号解码的有效工具,并具有潜在的暗示,以开发脑部计算机界面,从而通过想象的语音使通信能够进行通信。索引术语:无声沟通,语音识别,电子脑摄影,想象的语音,脑部计算机界面