点击购买,资源将自动在新窗口打开.
获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
扩散模型是基于马尔可夫过程的生成模型家族。在其前进过程中,他们逐渐向数据添加噪声,直到变成完整的噪声为止。在向后过程中,数据逐渐从噪声中逐渐发出。在本教程论文中,充分说明了扩散概率模型(DDPM)。详细简化了其可能性的变异下限,分布的参数和扩散模型的损耗函数。引入了对原始DDPM的一些模型,包括非固定的协方差矩阵,减少梯度噪声,改善噪声时间表以及非标准高斯噪声分布和条件扩散模型。最后,解释了噪声表位于连续域中的随机差异方程(SDE)的连续噪声时间表。
主要关键词