MA Hongwei 1, 2 , SUN Siya 1, 2 , WANG Chuanwei 1, 2 , MAO Qinghua 1, 2 , XUE Xusheng 1, 2 , LIU Peng 1, 2 , TIAN Haibo 1, 2 , WANG Peng 1, 2 , ZHANG Ye 1, 2 , NIE Zhen 1, 2 , MA Kexiang 1, 2 , GUO Yifeng 1, 2 , ZHANG Heng 1, 2 , WANG Saisai 1, 2 , LI Lang 1, 2 , SU Hao 1, 2 , CUI Wenda 1, 2 , CHENG Jiashuai 1, 2 , YU Zukun 1, 2
• MBSE 的系统架构• MBSE 的一致性原则• MBSE 模型导向的系统工程环境• 基于MBSE 、 M&S 及T&E 的系统发展• 具系统规范的系统模型( System Model ) • 具系统整合的系统模型( System Model ) • 具人机均可辨认的系统模型( System Model ) • SET : 系统工程的转型架构• SET : 系统整合的建模环境• CBTE : 战力导向的测评架构• CBTE : 战力导向的系统发展• 战力导向的系统获得
大多数自然领域可以通过多种方式表示:我们可以根据其营养内容或社会角色对食物进行分类,动物的分类学群体或其生态壁ni,以及乐器根据其分类学cate-cate-gore-gore或社会用途。对人类分类进行建模的先前方法在很大程度上忽略了交叉分类的问题,专注于学习一个单一的类别系统,这些类别可以解释所有功能。跨类别提出了一个困难的概率:我们如何在不首先知道该类别要解释的情况下推断类别?我们提出了一个新型模型,该模型表明人类跨类别是关于多个类别系统及其解释的特征的联合推断的结果。我们还为交叉分类行为形式化了两个常见的替代解释:第一个特征和对象 - 第一个方法。第一种方法表明,交叉分类是注意力程序的结果,其中特征是通过注意机制选择的,并且类别是第二个。对象 - 第一个方法表明,跨属性是重复的,顺序解释特征的连续性尝试,其中类别是第一个派生的,然后重新解释的特征。我们提出了两组模拟和实验,以测试模型对人类分类的预测。2011 Elsevier B.V.保留所有权利。我们发现,基于共同推论的方法为人类分类行为提供了最佳拟合,我们建议对人类类别学习的完整说明需要纳入类似于这些能力的东西。
我们使用扩散概率模型表示高质量的图像合成结果,这是一种受非平衡热力学考虑因素启发的潜在变量模型。我们的最佳结果是通过根据扩散概率模型与Langevin Dynamics匹配的扩散概率模型和降级分数之间的新联系而设计的,我们的模型可以解释为一种渐进的损失减压方案,该方案可以解释为自动性解码的普遍化。在无条件的CIFAR10数据集中,我们获得的成立分数为9.46,最先进的FID得分为3.17。在256x256 LSUN上,我们获得了类似于Progenkivegan的样品质量。我们的提示可在https://github.com/hojonathanho/diffusion上获得。
探讨HERA-JANUS模型本身的有效性,以期为我国航空安全提供可能的帮助。本文根据此次空难的具体描述,通过人因失误类型分析、人因失误认知分析、相关因素分析等,确定了各环节管制员人因失误因素的类型及特点。最后进行总结得出结论,并提出切实可行的方法,以减少管制员人因失误,加强相关监管,促进航空事业安全高效发展。
目录描述概率和生成性模型,包括近似推理算法(MCMC,变异推理),深入生成模型(自动回应,得分匹配,扩散和基于流程的模型)以及基于模型的顺序决策。课程描述本课程的重点是概率的基本原理及其在现代机器学习和生成建模中的核心作用。随着概率越来越多地推动AI的进步,本课程将探索其在一系列主题中的应用程序。从近似推理算法到通过大规模自学学习的生成模型,再到基于概率模型的决策方法,您将对这些方法如何塑造当代AI研究有了更深入的了解。通过本课程学习目标,将向您介绍概率机器学习中的核心主题,包括概率图形模型和近似推理算法(例如MCMC和变异推理),深层生成模型,例如自动化,自动性,得分匹配,基于基于流程的方法和基于概率的模型,以及概率的模型和方法,并均基于概率和方法(避孕方法)(均匀的模型)(均匀的方法)(均匀的方法)(均匀的方法)(均匀的方法)(均匀的方法)(均匀的方法)(均匀的方法)(均匀的方法(基于信息的实验设计)。在本课程结束时,您将熟悉尖端研究和该领域的历史基础。建议准备本课程是为当前从事研究或希望从事研究的学生设计的,以概率的机器学习或深层生成模型进行研究。学生有望对阅读和介绍现代机器学习会议论文感到满意。熟悉机器学习(在CSCI 567级别),算法(在CSCI 570的级别上)和概率(在数学505a的级别)将是有益的。课程注释等级类型:字母等级。演讲幻灯片和其他课堂信息的副本将发布在课程网站上。技术水平和硬件/软件所需的本课程没有特定的软件要求。该课程将定期计划使用部分讲座进行课堂(实践)的“实验室会议”,以提供更多的动手经验,以我们将学习的理论概念。这些会话将涉及运行代码并使用概率和生成模型的实现。因此,鼓励学生(尽管不需要)学生将笔记本电脑带到每个班级,以便他们可以跟随并参加这些实践实验室会议。这些会议也将有助于实施技能,这些技能可以在整个学期中运行的课程项目中使用。此外,请参阅有关USC计算中心笔记本电脑借贷程序(链接)的以下信息。所需的读数和补充材料在此类中没有必需的读数,补充材料或教科书。可选的读数和补充材料以下资源对本类涵盖的许多主题很有用:1。凯文·墨菲(Kevin Murphy),“机器学习:概率观点”,2012年(链接)。2。凯文·墨菲(Kevin Murphy),“概率机器学习:高级主题”,2023年(链接)。3。4。5。Chris Bishop,“模式识别和机器学习”,2006年(链接)。克里斯·毕晓普(Chris Bishop),“深度学习 - 基础和概念”,2024年(链接)。Stefano Ermon,深层生成模型,课程注释(链接)。
构建类似人类的综合性人工认知系统,即通用人工智能 (AGI),是人工智能 (AI) 领域的圣杯。此外,使人工系统实现认知发展的计算模型将成为大脑和认知科学的极好参考。本文介绍了一种通过集成基本认知模块来开发认知架构的方法,以实现对整个模块的训练。这种方法基于两个想法:(1) 受大脑启发的人工智能,学习人类大脑结构以构建人类水平的智能;(2) 基于概率生成模型 (PGM) 的认知架构,通过集成 PGM 来开发用于发展机器人的认知系统。所提出的开发框架称为全脑 PGM (WB-PGM),它与现有的认知架构有着根本的不同,因为它可以通过基于感觉运动信息的系统持续学习。在本文中,我们描述了 WB-PGM 的原理、基于 PGM 的基本认知模块的现状、它们与人脑的关系、认知模块整合的方法以及未来的挑战。我们的发现可以作为大脑研究的参考。由于 PGM 描述了变量之间的明确信息关系,因此 WB-PGM 为从计算科学到脑科学提供了可解释的指导。通过提供此类信息,神经科学的研究人员可以向人工智能和机器人技术的研究人员提供反馈,说明当前模型在参考大脑方面缺乏什么。此外,它可以促进神经认知科学以及人工智能和机器人技术研究人员之间的合作。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
对已有数据的二次分析可以节省时间、成本或其他资源。然而,回答某些问题可能需要有关未一起观察到的变量的共享信息。统计匹配可以整合两个(或更多)数据集,为这种情况提供了解决方案。一个必要的前提条件是,除了只在两个数据集中的一个中特有的变量之外,还有在两个数据集中都观察到的共同变量。这些共同变量用于根据现有数据估计特定变量之间的关系。重要的是,共同变量是特定变量的良好预测指标。获取未收集到一起的变量的共同信息的一种流行方法是基于这样的假设:特定变量是独立的,且以共同变量为条件。
3 The Bayesian Network Representation 45 3.1 Exploiting Independence Properties 45 3.1.1 Independent Random Variables 45 3.1.2 The Conditional Parameterization 46 3.1.3 The Naive Bayes Model 48 3.2 Bayesian Networks 51 3.2.1 The Student Example Revisited 52 3.2.2 Basic Independencies in Bayesian Networks 56 3.2.3 Graphs and Distributions 60 3.3 Independencies in Graphs 68 3.3.1 D-separation 69 3.3.2 Soundness and Completeness 72 3.3.3 An Algorithm for d-Separation 74 3.3.4 I-Equivalence 76 3.4 From Distributions to Graphs 78 3.4.1 Minimal I-Maps 79 3.4.2 Perfect Maps 81 3.4.3 Finding Perfect Maps ⋆ 83 3.5 Summary 92 3.6 Relevant Literature 93 3.7 Exercises 96