•保险和多元化•交易和对冲识别投资或分配代理商的资本监控机会的机会,例如公司控制促进商品和服务的交换,例如通过货币和交流媒体•更普遍地,创建(→)流动资产财务创新,例如证券化,导数,加密货币
设计自由形式的光子设备是一个充满挑战的主题,因为结构性自由的高度。在这里,我们提出了一种新算法,该算法使用伴随灵敏度分析和扩散模型对光子结构进行操作。我们证明,将伴随梯度值整合到非授权过程中,可以生成高性能设备结构。我们的方法可以通过合并在遵循制造约束的合成图像上训练的扩散模型来优化少量模拟的结构。与常规算法相比,我们的方法消除了对复杂的二进制化和圆锥过滤器的需求,克服了本地Optima的问题,并提供了多种设计选项。尽管具有固有的随机性,但我们的算法稳健地设计了高性能设备,并且优于最先进的非线性算法。
摘要 - 医学成像应用在人体解剖学,病理学和成像领域方面高度专业。因此,用于培训医学成像中深度学习应用的注释培训数据集不仅需要高度准确,而且还需要多样化,并且足够大,以涵盖与这些规格有关的大多数合理示例。我们认为,实现此目标可以通过带有注释的合成图像的受控生成框架来促进,需要多个条件规格作为输入才能提供控制。我们采用denoising扩散概率模型(DDPM)来训练肺CT域中的大规模生成模型,并根据无分类器采样策略进行扩展,以展示一个这样的生成框架。我们表明,我们的方法可以产生带注释的肺CT图像,这些图像可以忠实地代表解剖学,令人信服地愚弄专家将其视为真实。我们的实验表明,这种性质的受控生成框架几乎可以超过几乎所有最新的图像生成模型,而在接受类似的大型医疗数据集接受培训时,在生成的医学图像中实现了解剖学一致性。
生成的AI模型,例如稳定的扩散,DALL-E和MIDJOURNEY,最近引起了广泛的关注,因为它们可以通过学习复杂,高维图像数据的分布来产生高质量的合成图像。这些模型现在正在适用于医学和神经影像学数据,其中基于AI的任务(例如诊断分类和预测性建模)通常使用深度学习方法,例如卷积神经网络(CNNS)和视觉变形金刚(VITS)(VITS),并具有可解释性的增强性。在我们的研究中,我们训练了潜在扩散模型(LDM)和deno的扩散概率模型(DDPM),专门生成合成扩散张量张量成像(DTI)地图。我们开发了通过对实际3D DTI扫描进行训练以及使用最大平均差异(MMD)和多规模结构相似性指数(MS-SSSIM)评估合成数据的现实主义和多样性来生成平均扩散率的合成DTI图。我们还通过培训真实和合成DTI的组合来评估基于3D CNN的性别分类器的性能,以检查在培训期间添加合成扫描时的性能是否有所提高,作为数据增强形式。我们的方法有效地产生了现实和多样化的合成数据,有助于为神经科学研究和临床诊断创建可解释的AI驱动图。
深神经网络(DNNS)缺乏对概率图形模型(PGM)的精确语义和确定性的概率解释。在本文中,我们通过构造与神经网络完全相对应的无限树结构的PGM提出了创新的解决方案。我们的研究表明,在正向传播过程中,DNN确实执行了PGM推断的近似值,在这种替代PGM结构中是精确的。我们的研究不仅补充了将神经网络描述为内核机器或无限大小的高斯过程的现有研究,而且还阐明了DNNS对PGMS的精确推断进行更直接的近似。潜在的好处包括改进的教学法和DNN的解释以及可以合并PGM和DNN优势的算法。
1引言生成建模在机器学习和人工智能领域起着重要作用,因为它提供了一种能够理解,解释以及在我们数据丰富世界中存在的复杂模式的功能工具包。通过将概率理论作为捕获给定数据集中固有不确定性的原则方法,这些模型旨在近似负责生成数据的基础分布或随机过程。因此,概率生成模型具有解决各种问题的潜力,包括生成新的数据示例,进行观察给出的推理,估计事件的可能性以及有关不确定信息的推理。但是,从数据中学习分布是一个挑战问题,通常需要在建模灵活性和概率推断的障碍之间进行权衡。早期生成模型的优先级优先考虑可牵引推理,通常是通过图形模型的形式将概率结构施加在random变量上[Koller and Friedman,2009]。因此,他们缺乏对复杂分布进行建模的挠性。自那以后,提出的可进行的概率模型(TPM)的领域随后发生了,并提出了端流的参数化和学习范式,从而在概率电路的统一概念下产生了广泛而流行的模型类别。从障碍性的角度设计,这些模型可以有效地推断和精确的概率推理,使其适合于要求快速准确计算的任务。但是,
线性覆盖时间不太可能。。。。。。。q uentin d ubroff和j eff k ahn 1均匀的树在拓扑多边形,SLE的分区函数(8)以及C = -2对数CFT中的相关性。。。。。。。。。。。。。。。。。。。。。。。。m ingchang l iu,e veliina p eltola和h a a a a a a a a a a a a a a a w u 23通过噪声正规化,用于由高斯粗糙路径驱动的粗糙差分方程式,以及d uboscq 79相关性衰减,用于较弱的brown a rka a rkaiy a rkari和s kyot a的相关性衰变无界域中的正常反射:从瞬态到稳定性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。m iha brešar,leksandar m ijatovi´ c和ndrew w ade 175溶液在随机热方程中,在临界状态下不会爆炸,而随机热方程未爆炸。。。。。。。。。。。。。。。。。。。。michael s alins 223随机矩阵的自由总和h ong c hang j j i和j aeewhi p ark 239一种确定点过程方法的缩放和局部限制随机幼小tableaux的确定点过程方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。j acopo b orga,cédricBoutillier,v alentinféray和p ierre -loïcMéliot299 A超级偏见的当地时代的随机微分方程
差异介质,TDM),nive pscs 透过自我组织的方式形成类囊胚( Yu等人,2021a)。polo polo(polo 团队则利用再程式化纤维母细胞((成纤维细胞))te te te te te te te te pre,pre,进行聚合形成称为iblastoids 的类囊胚( liu et al。 (腔)liu等人,2021; Yu等人,2021a)。人类类囊胚的制作方法经不断改,naive Esc或ipscs(Yanagida等,2021; Kagawa等,2022; Yu等人,2023年)、EPSCS(Fan等,2021; Sozen等,2021),以及8Clcs (Mazid等,2022; Yu等人,2022年),子宫内膜上皮细胞)(Kagawa等,2022)(2022))子宫内膜基质细胞(2023)(2023))(2023))进进
Jeffrey Unruh .............................................................................................. LCI Consultant Gabriel Toro ................................................................................................ LCI Consultant William Swanson ................................................................................. Stantec Consultant
p(y = 1 | x 1,x n)= p(y = 1)q n i = 1 p(x i | y = 1)py∈{0,1} p(y = y)q n i = 1 p(x i | y = y = y = y)= y = 1) y = 1)q n i = 1 p(x i | y = 1)