摘要 - 医学成像应用在人体解剖学,病理学和成像领域方面高度专业。因此,用于培训医学成像中深度学习应用的注释培训数据集不仅需要高度准确,而且还需要多样化,并且足够大,以涵盖与这些规格有关的大多数合理示例。我们认为,实现此目标可以通过带有注释的合成图像的受控生成框架来促进,需要多个条件规格作为输入才能提供控制。我们采用denoising扩散概率模型(DDPM)来训练肺CT域中的大规模生成模型,并根据无分类器采样策略进行扩展,以展示一个这样的生成框架。我们表明,我们的方法可以产生带注释的肺CT图像,这些图像可以忠实地代表解剖学,令人信服地愚弄专家将其视为真实。我们的实验表明,这种性质的受控生成框架几乎可以超过几乎所有最新的图像生成模型,而在接受类似的大型医疗数据集接受培训时,在生成的医学图像中实现了解剖学一致性。