在使用钛合金粉末时,在定向能量沉积(DED)添加剂制造,粉末聚集和烧结时可能会发生在熔体池之外。使用原位同步子射线照相术,我们研究了池周围发生Ti6242粉末的烧结的机制,进行了一项参数研究,以确定激光功率和阶段遍历速度对烧结速度的影响。结果表明,尽管后者也降低了沉积层的厚度,但可以使用高激光功率或增加阶段横向速度来减少有害的烧结。DED期间烧结的机理被确定为激光束中粉末颗粒的飞行加热。在本研究中探索的加工条件下颗粒加热的计算证实,粉末颗粒可以合理地超过700℃,即Ti表面氧化物溶解的阈值,因此如果未掺入熔体池,则粉末容易烧结。沉积表面上烧结粉末层的堆积导致缺乏融合孔。为了减轻烧结的形成及其对DED组件质量的有害影响,至关重要的是,粉末输送点面积小于熔体池,以确保大多数粉末土地在熔体池中。
1 缩写:AM:增材制造;MPD:熔池深度;DED:定向能量沉积;ANN:人工神经网络;VED:体积能量密度;PID:比例-积分-微分。
红外激光定向能量沉积 (DED) 铝材面临许多加工问题,例如成形性差、形成孔隙、反射率高等,这些都降低了生产率。本文开发并应用了 2 kW 高功率(450 nm)蓝光定向能量沉积 (BL-DED) 技术对纳米 TiB2 装饰的 AlSi10Mg 复合材料进行加工。单道实验表明,蓝光形成完全熔化轨道所需的功率密度低于红外激光(1060 nm)的功率密度。在 900 W 激光功率下,扫描速度为 4 mm/s,蓝光熔池宽度和深度分别约为 2500 μm 和 350 μm;而红外激光未能完全熔化,原因是铝对蓝光波长的吸收率较高。在 4 mm/s 下,等轴晶粒的面积分数高达 63%。据我们所知,这一结果是 DED 工艺单道熔池中等轴晶粒面积分数最高的一次。如此高的比例主要归因于平顶蓝光激光的低热梯度(8 × 10 5 K/m)和纳米 TiB2 颗粒的细化效果。我们的工作表明,与使用红外激光的铝合金和复合材料 DED 相比,高功率蓝光激光提高了效率和制造质量,这也有望帮助加工其他高反射率材料,如铜合金。
这项研究研究了通过定向能量沉积(DED)处理的基于Co-Ni-al-W-TA-TI-CRγ/γ'基于钴的凝固路径中出现的隔离和降水。观察结果揭示了添加剂制造过程中液体中划分的特征元素。由于这种微层次,发生复杂的多相沉淀,并且在由DED制造的基于钴的超合金中鉴定并表征了各种沉淀物。扫描电子显微镜(SEM)和透射电子显微镜(TEM)用于研究在实用的显微组织中检测到的各个阶段的空间分布和性质。能量色散X射线光谱法(EDS),波长色散X射线光谱法(WDS)和电子能量损耗光谱(EEL)与衍射模式的精细分析相结合,以识别装饰互构成区域的不同阶段。这些特征允许鉴定不同的亚微音沉淀:Al 2 O 3,(Ta,ti)(n,c),HFO 2,Cr 3 B 2和(Ti,Ti,Zr,Hf)2 Sc。根据实验结果讨论凝固序列。这项工作提供了对固化隔离和在DED处理的基于钴的超合金中的第二相降水之间相互作用的首次了解。关键字γ/γ'Superaly合金;增材制造;第二相降水; tem
用定向能量沉积的制造中金属组件的自动修复过程越来越重要。在这方面,定向能量沉积(DED)是一种有前途的金属添加剂制造技术,用于翻新组件。但是,实际实施和每天利用这种过程来维修目的,这引入了很高的复杂性。维修过程是劳动和时间密集的,因此限制了它们在行业中的采用。这项工作通过利用基于AI的方法和进一步的算法来克服当前局限性来证明修复过程的自动化。提议的工作流程涵盖了修复过程,从被计算机内部集成的3D扫描仪的反向工程开始,直到材料添加到DED,以实现更有利可图的解决方案和朝着循环经济发展的一步。
摘要:近几十年来,增材制造领域人气飙升,尤其是作为传统金属零件生产的可行替代方案。定向能量沉积 (DED) 是最有前途的增材技术之一,其特点是沉积速率高,其中电弧增材制造 (WAAM) 就是一个突出的例子。尽管 DED 具有诸多优势,但众所周知,其生产的零件表面质量和几何精度不佳,这一直是其广泛应用的主要障碍。这在一定程度上是由于对增材层产生的复杂几何形状缺乏了解。为了应对这一挑战,研究人员专注于表征增材层的几何形状,特别是焊珠的外部。本文通过比较两种不同的技术:振荡策略和重叠焊珠,专门研究了产生的壁的几何特征和对称性。
具有特定位置化学成分的功能梯度材料 (FGM) 通常通过定向能量沉积 (DED) 制造。尽管之前的工作制造了一种成分在铁素体和奥氏体合金之间变化的 FGM,但是由于成分变化导致沉积物形状发生变化,因此出现了困难。文献中的 FGM 也存在此问题;然而,与其他情况不同,这两种合金在整个构建过程中的热物理性质相似。在这里,我们研究了在通过激光 DED 制造 FGM 过程中化学成分和表面活性元素对沉积物几何形状的作用。使用经过充分测试的三维瞬态数值传热和流体流动模型和热力学计算的结果,分析了相关 FGM 成分的单轨实验。实验表明,在恒定的激光功率和扫描速度下,沉积物形状随成分而变化。热力学分析表明,熔合区中氧的溶解度对于用于 FGM 的每种成分都存在显著差异。数值建模表明,熔合区中溶解氧引起的 Marangoni 对流引起的流体流动变化是实验中观察到的沉积物形状变化的主要原因。由于氧气可以通过原料以及周围大气进入熔合区,这些发现阐明了 FGM DED 制造过程中以前未考虑的工艺控制方面。
1 简介 增材制造 (AM) 是指通过连接材料从 3D 模型制造零件的工艺 [1]。定向能量沉积 (DED) 是一种特殊类型的金属 AM 工艺,其中激光和金属粉末的交汇会在基材上形成熔融的金属池(熔池),然后冷却以形成固体金属轨道。此过程逐层重复以创建最终部件。与其他金属 AM 工艺相比,DED 以其制造大型工件、构建近净形状以及修复现有零件和铸件的能力而闻名 [2–4]。此外,DED 还用于开发高级材料,例如分级材料 [5],这允许将金属粉末组合用于单个部件的不同位置。因此,AM 技术为制造业带来了重大创新。与传统的减材制造相比,AM 允许无与伦比的灵活设计,并通过仅在需要的地方沉积材料来减少材料浪费 [6]。尽管 DED 具有上述优势,但由于零件质量不可靠,需要改进过程监控和控制才能在整个行业范围内采用。具体而言,零件质量差是由于激光成型对操作和边界参数(包括激光功率)的微小变化高度敏感 [7]。基于反馈的方法有可能动态调整激光功率以减少过程波动,而无需参考特定的、先前测试过的几何形状和沉积历史。非接触式仪器已广泛用于类似应用,因为它们能够在远离沉积区域热量的安全距离处收集信息。由于激光温度高,高熔化温度、高功率激光反射和非层流很容易导致传感器损坏。当考虑成本和易于集成时,使用可见光摄像机进行光束同轴熔池监测仍然是一种方便且经济高效的解决方案,因为许多 DED 沉积头都配备了用于将监测摄像机纳入光学链的端口 [8]。因此,这项工作专注于一种视觉装置,该装置可以通过熔池的能量含量间接检测珠子高度的异常,从而可以预测和纠正与所需沉积结果的潜在偏差。此外,还创建了数据收集和标记管道,以减少数据准备时间。为了预测轨道几何形状的偏差,我们探索了机器学习 (ML) 算法的使用,特别是支持向量回归 (SVR) 和卷积神经网络 (CNN) 的回归。对创建的模型进行了评估,以确定其是否能够集成到边缘设备上,以实现机器的闭环或前馈控制。
GEFERTEC arc405 线弧定向能量沉积 (Wire Arc DED) 系统 - 能够以五轴机器人系统控制的高沉积速率打印大型 (330 磅) 3D 金属部件