2017 年 3 月 12 日接受,2017 年 3 月 16 日在线发布,特刊-7(2017 年 3 月)摘要 准备成功开发一个三自由度运动模拟平台,该平台能够模拟道路上的汽车行驶。开发运动模拟平台是为了实际模拟和测试无人驾驶道路车辆在道路上行驶的能力,然后在实际中演示。从概念设计到实际实施,考虑了运动模拟平台开发的所有方面。介绍了运动模拟平台的机械设计和构造,以及使该运动模拟平台运行的电子设备和软件。开发了过程和平台方向的数学模型。能够调节过程的控制器架构可成功控制运动模拟平台。Intelligent Motion Technology Pvt. 的实际运动模拟结果。Ltd,证明了运动模拟平台的成功。运动模拟平台的成功开发在很大程度上归功于对不同开发阶段的广泛研究、规划和评估。关键词:三自由度运动、运动模拟器、运动平台、倾斜传感器、无刷伺服电机。1.简介
“为人类运动和监视的17 DOF类人生物机器人的设计和实施”项目引入了一个多功能的类人动物机器人,该机器人将娱乐和安全功能结合在一起。该创新的机器人配备了17度的自由度(DOF),为其提供了复制各种人类运动并用作监视工具的灵活性。机器人的硬件组件包括伺服电机,自定义机器人框架,Arduino微控制器,Nodemcu和ESP32CAM模块,用于监视功能。ESP32CAM允许实时视频流和监视。它旨在提高安全性,可以远程控制以帮助通过实时视频提要提供视觉反馈。机器人的附加功能是通过激活手电筒来照亮其周围环境,在弱光情况下提供帮助。在类似人类运动的领域,机器人能够复制各种行动,例如步行,挥舞等等。此功能提供了有趣的元素,并突出了机器人在交互式设置中的潜力。此外,包含一个被动红外(PIR)传感器允许机器人有效地检测人类的存在和运动。它可以通过传输警报,适合于家庭或办公室的监视或协助各种安全相关申请来响应人类活动。“ 17 DOF类人生物机器人的设计和实施
植物已经发展了几种应对不断变化的环境的策略。一个例子是通过种子发芽给出的,当环境条件适合植物寿命时,必须发生这种情况。在模型系统中,拟南芥种子发芽是由光引起的。但是,在自然界中,无论这种刺激如何,几种植物的种子都可以发芽。虽然对光引起的种子发芽的分子机制有充分的理解,但在黑暗中管理发芽的分子机制仍然含糊不清,这主要是由于缺乏合适的模型系统。在这里,我们采用了氨基甲胺(Arabidopsis的近亲)作为强大的模型系统,以发现独立于光的发芽的分子机制。通过比较氨基胺和拟南芥,我们表明,维持促膜激素吉布雷素(GA)水平的维持促使豆蔻种子在黑暗和光条件下发芽。使用遗传学和分子生物学的特性,weshowththatthatthe cardamine dof转录反向doF影响发芽1(CHDAG1),与拟南芥转录因子Dag1同源,与该过程功能有关,从而通过负调节Ga Biosynthetic Genes chgaGaGA33Ox1和CHGA33Ox1和CHGA333Ox1和CHGA333Ox1和CHGA33Ox1和CHGA333Ox1和CHGA333Ox1和CHGA333Ox。我们还证明,这种机制可能在其他能够在黑暗条件下发芽的胸腺科中保存,例如鳞翅目sativum和Camelina sativa。我们的数据支持氨基胺作为适合研究光独立发芽研究的新模型系统。利用这一系统,我们还解决了一个长期存在的问题,该问题是关于控制植物中光依赖发芽的机制,为未来的研究打开了新的边界。
† 机械工程系,Savitribai Phule Pune 大学,麻省理工学院工程学院,Kothrud,浦那,印度 ‡ 机械工程系,Savitribai Phule Pune 大学,VIIT,Kondhawa (Bk),浦那,印度 2017 年 3 月 12 日接受,2017 年 3 月 16 日在线提供,特刊-7(2017 年 3 月)摘要 成功开发了一种三自由度运动模拟平台,该平台能够模拟汽车在道路上行驶。该运动模拟平台的开发是为了实际模拟和测试无人驾驶道路车辆在道路上行驶的能力,然后在实际设备上进行演示。从概念设计到实际实施,运动模拟平台开发的所有方面都考虑在内。介绍了运动模拟平台的机械设计和构造,以及使该运动模拟平台运行所需的电子设备和软件。建立了过程和平台方向的数学模型。能够调节过程的控制器架构实现了对运动模拟平台的成功控制。Intelligent Motion Technology Pvt. Ltd. 的实际运动模拟结果证明了运动模拟平台的成功。运动模拟平台的成功开发很大程度上归功于对不同开发阶段的广泛研究、规划和评估。关键词:三自由度运动、运动模拟器、运动平台、倾斜传感器、无刷伺服电机。1. 简介 1 要求运动模拟平台是
o 人口统计——即将于 7 月发布三年一度的 DoF 评估报告 o 脱碳——对经济/公共财政的作用和影响 o 去全球化——DoF / ESRI 联合工作 o 数字化——DoF / DETE 联合工作
辐射场的自由度 (DoF) 与 MIMO 天线设计相关,因为 DoF 代表 MIMO 信道有效自由度数的上限,也代表多用户 MIMO 通信中用户数的限制。DoF 通常定义为距包围源的最小表面一定距离,因此无功场可以忽略不计。本文建议扩展 DoF 概念,使其包含对频率带宽的依赖性,并提出计算过程。这是通过引入存储在辐射表面附近的无功能量与辐射功率之间的比率作为源频率带宽的度量来实现的。问题就在这里
辐射场的自由度 (DoF) 与 MIMO 天线设计相关,因为 DoF 代表 MIMO 信道有效自由度数量的上限,也代表多用户 MIMO 通信中用户数量的限制。DoF 通常定义为与包围源的最小表面有一定距离,因此无功场可以忽略不计。本文建议扩展 DoF 概念,使其包括对频率带宽的依赖性及其计算过程。这是通过引入存储在辐射表面附近的无功能量与辐射功率之间的比率作为源频率带宽的度量来实现的。问题就在这里
辐射场的自由度 (DoF) 与 MIMO 天线设计相关,因为 DoF 代表 MIMO 信道有效自由度数的上限,也代表多用户 MIMO 通信中用户数的限制。DoF 通常定义为距包围源的最小表面一定距离,因此无功场可以忽略不计。本文建议扩展 DoF 概念,使其包含对频率带宽的依赖性,并提出计算过程。这是通过引入存储在辐射表面附近的无功能量与辐射功率之间的比率作为源频率带宽的度量来实现的。问题就在这里
辐射场的自由度 (DoF) 与 MIMO 天线设计相关,因为 DoF 代表 MIMO 信道有效自由度数的上限,也代表多用户 MIMO 通信中用户数的限制。DoF 通常定义为距包围源的最小表面一定距离,因此无功场可以忽略不计。本文建议扩展 DoF 概念,使其包含对频率带宽的依赖性,并提出计算过程。这是通过引入存储在辐射表面附近的无功能量与辐射功率之间的比率作为源频率带宽的度量来实现的。问题就在这里