Kinetis®K81MCU扩展了Kinetis MCU投资组合,具有高级安全功能,包括防僵局外围设备,启动ROM,以支持加密的固件更新,外部串行闪存闪存,AES加速器,AES加速器的自动解密,以及对公开密钥密钥的硬件支持。K81 MCU可用于满足销售点(POS)应用程序的安全标准。
doi:https://doi.org/10.47760/ijcsmc.2024.v13i04.008摘要:随着数字景观的扩展,我们对安全数据传输的依赖的依赖,因此采用了加密技术已成为最重要的。随着时间的流逝,我们目睹了从基本密码方法(如替代密码)到当今的复杂算法的发展,这是由高级加密标准(AES)体现的。AES在加密的最前沿的提升可以归因于其无与伦比的安全功能,超过了其前辈,例如数据加密标准(DES)。AES拥有强大的安全措施,使其几乎不受传统的加密攻击。其对解密的弹性是由其复杂的加密过程强调的,该过程涉及复杂的操作,例如字节替代,行移动,列混合和圆形密钥添加。相反,解密逆转了这些步骤,确保加密数据的机密性保持完整。尽管出现了各种加密攻击,但没有一个对正确实施的全AES算法构成重大威胁。大多数攻击目标是不完整的实现,强调了适当实施实践在最大化AES的安全福利方面的重要性。除了其安全能力之外,AES因其效率,可持续性和简单性而脱颖而出。尽管AES广泛采用和鲁棒性,但AES表现出一种有趣的现象,称为误差传播。关键字:高级加密标准(AES),数据加密标准(DES),加密,解密,错误传播通过理论分析和实证研究,我们阐明了错误在AE内传播的机制,从而阐明了它们引入的脆弱性。此外,我们探讨了在实际情况下错误传播的含义,包括其对加密协议,错误校正机制和整体系统可靠性的影响。我们的发现强调了在AES实施中全面理解和减轻错误传播的影响的重要性,从而提供了增强加密系统对不可预见的逆境的弹性的见解。
摘要 - 由于易于获取信息资源,无数网络为生产力带来了许多好处。现在可以通过更少的精力和更少的钱设置网络更快地建立和更改。但是,无线技术也会产生新的威胁。并提醒现有的风险配置文件,以了解信息安全。在无线保真度(Wi-Fi)中,加密算法等安全机制起着至关重要的作用。这些算法消耗了大量的内存和功率。因此,这项研究提出了一种计算有效的安全算法(CESA),该算法可降低功率和内存的高消耗,以有效地保护公共Wi-Fi网络。提出的CESA基于基于哈希的消息身份验证算法。使用安全的哈希算法(SHA)完成了一种数字签名算法(DSA)来生成和验证签名。网络仿真2(NS-2)工具用于评估每种算法的各种设置,包括关键生成时间,加密时间和解密时间。通过模拟,证明了所提出的算法CESA在关键生成时间,加密时间和解密时间方面优于增强的Diffie-Hellman(EDH)和高级加密标准(AES)算法。为了生成钥匙,拟议的CESA算法最多需要59 s,而EDH和AES算法的算法接近90 s。为了加密数据,拟议的CESA算法大约需要98秒,而EDH和AES算法花费了将近167秒。为了解密数据,提议的CESA算法大约花了80秒,而EDH和AES算法花费了近160 s。因此,EDH和AES使CESA对攻击更加强大,并且在处理加密和解密过程方面非常迅速。关键字 - 无线网络,无线保真度,加密算法,计算有效的安全算法,基于哈希的消息身份验证算法,数字签名算法
(i) 专门为军事应用而设计的 GNSS 接收设备(如果设计或修改为机载应用,并能够在速度超过 600 米/秒时提供导航信息,则为 MT); (ii) 专门为 GPS 精确定位服务 (PPS) 信号的加密或解密(例如 Y 码、M 码)而设计的全球定位系统 (GPS) 接收设备(如果设计或修改为机载应用,则为 MT);
摘要 - 随着云计算的越来越多,确保云环境中的数据安全已成为商业组织的关键问题。量子密码学利用量子力学的原理来保证安全的通信,因为任何窃听的尝试都会改变量子状态,从而提醒当事方入侵。本文提出了用于云安全性的基于Ciphertext-Policy属性的多量量子密钥分布(QKD)Ciphertext-Policy属性(CP-ABE)。使用量子密码学用于安全云数据的建议的多量QKD模型涉及使用量子密钥分布协议来生成一个安全的加密和解密密钥。此协议涉及通过量子通道发送量子信号,以在发件人和接收方之间分配秘密密钥。然后使用CP-ABE技术将密钥用于对数据进行加密和解密。此技术允许基于属性而不是明确的密钥交换来对数据进行加密和解密,这使其特别适用于由多个访问级别级别的用户存储和处理数据的云环境。提出的仿真模型的积极结果表明,量子密码学在保护云数据中的潜力。索引术语 - 量子密码学,多Qubit量子密钥分布,云安全性,消费者安全性。
量子力学的不可克隆原理断言量子信息不能被一般复制。这一原理对量子密码学有着深远的影响,因为它从根本上限制了恶意方可以实施的策略。其中一个影响是,量子信息可以实现经典加密无法实现的加密任务,最著名的例子就是信息论安全的密钥分发 [BB84]。除此之外,不可克隆原理还开辟了一条令人兴奋的途径来实现具有某种不可克隆性的加密任务,例如量子货币 [Wie83、AC12、FGH+12、Zha19a、Kan18]、用于数字签名的量子令牌 [BS16]、程序的复制保护 [Aar09、ALL+20、CMP20],以及最近的不可克隆加密 [Got02、BL19] 和解密 [GZ20]。在这项工作中,我们重新审视了 Aaronson 和 Christiano 提出的隐藏子空间思想,该思想已用于上述几个应用。我们提出了这一思想的概括,其中涉及隐藏陪集(仿射子空间),并展示了该思想在签名令牌、不可克隆解密和复制保护中的应用。给定一个子空间 𝐴 ⊆ 𝔽 𝑛 2 ,相应的子空间状态定义为子空间 𝐴 中所有字符串的均匀叠加,即
由于医疗保健信息系统技术的最新进步,数据级别的数据泄漏一直在上升。因此,需要使用数据级别的医疗保健系统中的加密算法来分析现有的数据保护技术。为确保医疗保健信息系统中的数据级保护而开发的现有数据级保护技术缺乏关键安全模型和数据库安全方法的整合,例如增强的加密算法在数据保护技术的设计和开发中。在这项研究中,设计科学研究方法用于设计和开发具有碱基64 512位的加密算法,以增强数据级别的数据保护。Python编程语言用于制定用于实验的仿真程序。在医疗保健信息系统中测试了开发算法的性能。将结果与现有的加密算法进行了比较,以评估加密和解密过程,蛮力攻击的强度和纯文本脆弱性。结果表明,碱基64和512位的固定长度的开发算法达到了最佳性能。总而言之,医疗保健数据非常敏感且至关重要,因此需要增强的加密算法来减少数据级别的数据泄漏。关键字:算法,加密,安全性,加密,解密标准,医疗保健,网络安全,医疗保健