数字增强证据 法院可能需要考虑改变证据规则,但在此之前,数字增强证据是音频、视频或经过 AI 软件增强的图像。法官可能需要要求专家对经过 AI 软件增强的图像进行证词。数字增强证据的目的通常是为了提高受到质疑的音频、视频和图像的质量,而不是视频或图像。这与过去的用途不同,例如依靠噪音,因为 AI 可能会用噪音填充图像上的像素,例如,通过嵌入他人的肖像来改变原始图像。
摘要:在过去的几年中,扩散模型(DMS)达到了前所未有的视觉质量水平。然而,对DM生成图像的检测几乎没有关注,这对于防止对我们社会的不利影响至关重要。相比之下,从法医角度对生成对抗网络(GAN)进行了广泛的研究。在这项工作中,我们采取自然的下一步来评估是否可以使用以前的方法来检测DMS生成的图像。我们的实验产生了两个关键发现:(1)最新的GAN检测器无法可靠地区分真实图像,但是(2)在DM生成的图像上重新训练它们几乎可以完美地检测,甚至可以显着将其推广到GAN。与特征空间分析一起,我们的结果导致了以下假设:DMS产生的可检测到的伪影较少,因此与gan相比更难检测到。造成这种情况的一个可能原因是在DM生成的图像中没有网格样频率伪像,这是已知的gan弱点。但是,我们做出了有趣的观察结果,即扩散模型倾向于低估高频,这是我们归因于学习目标。
摘要这项研究研究了Deepfake和开源智能(OSINT)在使虚假运动及其社会后果的作用。使用DeepFake检测挑战(DFDC)数据集进行技术评估,OSINT网络和情感分析的社交媒体数据集以及来自全球虚假信息索引的公众舆论数据,研究应用机器学习分类,网络分析,情感分析和中断时间序列(ITS)分析。技术评估的检测准确性为0.73,精度为0.75,召回0.70,确定了识别合成介质的增强区域。OSINT分析显示,虚假信息的关键放大器,用户1的学位中心性为0.263,betweensess中心性为0.135。 情感分析显示,平均情绪得分为-0.085,而其分析记录了公共信任后事件事件的9.76点下降。 建议包括开发自适应AI检测系统,实施全球监管措施,促进公共媒体素养以及鼓励道德的OSINTOSINT分析显示,虚假信息的关键放大器,用户1的学位中心性为0.263,betweensess中心性为0.135。情感分析显示,平均情绪得分为-0.085,而其分析记录了公共信任后事件事件的9.76点下降。建议包括开发自适应AI检测系统,实施全球监管措施,促进公共媒体素养以及鼓励道德的OSINT
虽然这项技术最广泛地与媒体操纵和虚假信息传播有关,通常被称为深度伪造,但它越来越多地被用于积极的应用,并被整合到从娱乐到人道主义努力和教育的各个领域。随着人工智能生成的角色在不同行业的适应和使用,我们看到了在学习、隐私、电信、艺术和治疗等各个领域都有重大积极应用的潜力。在本次研讨会上,我们将召集人机交互、人工智能和相关领域的研究人员,探讨使用人工智能生成的角色和相关形式的合成媒体的积极应用、设计考虑和道德影响。
虽然这项技术最广泛地与媒体操纵和错误信息的传播有关,通常被称为深度伪造,但它越来越多地被用于积极的应用,并融入从娱乐到人道主义努力和教育的各个领域。随着人工智能生成的角色在不同行业的适应和使用,我们看到了在学习、隐私、电信、艺术和治疗等各种领域都有重大积极应用的潜力。在本次研讨会上,我们将召集人机交互、人工智能和相关领域的研究人员,探讨使用人工智能生成的角色和相关形式的合成媒体的积极应用、设计考虑和道德影响。
第一次提到深度伪造是在 2016 年美国总统大选一年多后,那次大选以虚假新闻现象为标志(Gunther 等人,2018 年;Lee,2019 年)。许多人担心接下来的 2020 年总统大选也会充斥着虚假信息,尤其是虚假新闻和深度伪造的结合,但这并没有发生(Meneses,2021 年)。对这次选举影响最大的深度伪造可能是 2019 年 5 月涉及纳西·佩洛西的深度伪造:当时的美国众议院议长看起来喝醉了,说话含糊不清,好像喝醉了一样(Stewart,2019 年)。关键在于,这不是深度伪造,因为它没有使用人工智能;相反,它是一个廉价伪造(或不太常用的浅层伪造),一段使用比深度伪造技术简单得多的手段编辑的视频(Pawelec,2022 年)。正如 Paris & Donovan (2019) 所说,深度伪造和廉价伪造的共存增加了区分两者的难度。这种类型的虚假信息可能对政治话语和未来选举产生的影响(Appel & Prietzel,2022)并非无关紧要,因为它是故意改变的视听内容,并通过社交媒体进行放大。至于佩洛西的视频,由于它是基于编辑软件或只是音频音调的变化,因此更容易做到,也更容易检测,这与今天的假新闻类似。这个例子强调了了解每一种现象的本质的必要性,尽可能正确地定义它,“以协助制定一致且理论上连贯的深度伪造定义”(Whittaker 等人,2023 年)。
长期以来,视频证据一直是表明某人是否做过或说过某事的最佳方式。不幸的是,深度伪造的兴起意味着情况已不再如此。深度伪造是显示人们说或做的事情的视频,这些视频是由基于深度学习的人工智能 (AI) 系统创建的,因此得名深度伪造。过去几年,有少数深度伪造视频在网上疯传。其中包括巴拉克·奥巴马、唐纳德·特朗普和马克·扎克伯格等知名人物的视频
随着深度伪造技术的快速发展,深度伪造语音的检测变得越来越具有挑战性。在本文中,我们提出了一种用于深度伪造语音检测的混合架构,将用于特征提取的自监督学习框架与分类器头相结合,形成端到端模型。我们的方法结合了音频级和特征级增强技术。具体而言,我们介绍并分析了用于增强原始音频频谱图和在训练期间增强特征表示的各种掩蔽策略。我们在特征提取器的预训练阶段加入了压缩增强,以解决小型单语言数据集的局限性。我们在 ASVSpoof5(ASVSpoof 2024)挑战赛上对该模型进行了评估,在封闭条件下在 Track 1 中取得了最佳结果,等错误率为 4.37%。通过使用不同的预训练特征提取器,该模型实现了 3.39% 的增强 EER。我们的模型表现出了抵御未知深度伪造攻击的强大性能,并在不同的编解码器中表现出了强大的泛化能力。