抽象背景:浆膜骨髓瘤(PBM)是多发性骨髓瘤(MM)的罕见,侵略性亚型,预后不良。另一方面,浆膜淋巴瘤(PBL)是具有浆细胞表型的侵袭性B细胞淋巴瘤。重要的是,PBM很难与PBL区分开,因为两种疾病的临床特征都紧密重叠。我们报告了两例PBM病例,并伴有明显的外胸腔病变。案例:案例1:一名38岁的女性抱怨疲劳。她出现了全年的肿瘤,脾肿大,胸壁上的软组织病变以及多个溶性损伤。最初,软组织的病理确定了PBL的诊断。她回到了两个时代的周期,从而导致了大幅改进。然后,她收到了达拉特瘤(Dara)和列纳纳匹胺(Lenalidomide),达到了两年的缓解。病例2:对胰腺和腹膜后肿瘤的多个肿瘤进行了60岁男性的评估。胰腺肿瘤的活检鉴定出浆细胞样细胞,而骨髓活检没有显示浆细胞的迹象。因此,他最初被诊断为具有多个浆细胞瘤,并接受了与硼替佐米(BOR),Lenalidomide和Texamethasone的3个化学疗法,但徒劳无功。一旦BOR被替换为Dara,他就会迅速形成泛绿色炎和腹水,充满了浆膜,并最终死于多器官衰竭。结论:由于没有针对PBM的标准治疗方法,我们的病例提出了一种与抗肌瘤和抗淋巴瘤方案的联合治疗可能会提供更好的结果。此外,KI-67增殖指数将是诊断PBM的有用工具。
采用 16 号钢制成。圆孔 19 英寸安装导轨采用 16 号钢制成。包括十个 CLPKIT10-32-10 黑色机架螺钉,带垫圈和夹紧螺母。静态负载额定值高达 50 磅(22 千克)。采用 RAL9005 黑色粉末涂料完成。符合 Greenguard 室内空气质量指南。符合 GSA 计划购买的 TAA 标准。
面等离子体共振,促进了先进传感器的发展。[2,3] 在介电材料上制造的纳米孔阵列——更普遍地说是由亚波长直径的孔组成的规则有序结构——构成了集成二维光子晶体和全介电超表面架构的基础,能够以前所未有的水平限制和操纵光(包括幅度、光谱和空间管理)。[4] 这种等离子体和全介电纳米结构的纳米制造的通常技术方法依赖于各种工具和方法,其中包括聚焦离子束、电子束、光刻、反应离子蚀刻等。[5,6] 这些制造方法成熟且性能高,然而它们速度慢,需要针对所用每种材料进行优化的几个步骤和技术,从而不可避免地增加了整个过程的总成本和复杂性。未来的先进设备现在要求除了利用完美控制的平面纳米图案(在 X 和 Y 维度)之外,还需要利用第三维度(Z)。[7] 特别是,深度至少达到几微米的纳米孔阵列排列可以大大拓宽纳米光子结构的可能设计和功能范围。[7,8] 然而,在材料表面制造具有圆柱形轮廓的如此深的孔的技术具有挑战性。[9–12] 因此,引入一种多功能的制造方法,将孔深度添加为一个直接且独立的自由度,有望形成先进的架构。在此背景下,我们探索超快激光加工作为在参考介电材料熔融石英表面创建深气孔的直接方法。所谓“直接”,是指通过一步工艺制造一个孔,只用一次激光照射即可烧蚀物质,无需任何额外处理(例如化学蚀刻[13]),也无需平移目标材料。[14] 尽管超短脉冲直接激光烧蚀的最终空间分辨率尚未达到足够的性能标准,无法与传统纳米制造工艺相媲美,无法制造功能性纳米光子元件,但我们的目标是表明它代表了一种替代和互补的解决方案,在速度、无掩模和一步工艺、不需要真空环境或化学品方面具有吸引人的优势。此外,纳米结构可以在单个
微通道散热器 (MCHS) 能够通过液体到蒸汽的相变去除极高的热通量,使其适用于各种应用,包括高功率微电子的热管理。然而,随着蒸汽气泡的增大,微通道堵塞会导致流动沸腾不稳定性,阻碍了它们的商业适用性。本研究填补了文献中关于微通道深度对流动沸腾不稳定性的影响的研究空白,包括加热表面温度和压降振荡的幅度,以及它们对传热性能的影响。实验使用介电水在多个平行微通道中沸腾,质量通量为 220 和 320 kg/m²s,壁面热通量范围为 25 kW/m² 至 338 kW/m²。研究了两种不同的 MCHS,它们由无氧铜基板制成,每种 MCHS 包含 44 个平行微通道,标称深度分别为 500 µm 和 1000 µm,标称宽度一致,均为 200 µm。使用基板上嵌入的 T 型热电偶阵列测量温度梯度,从而测量传热系数。研究结果表明,在固定壁热流条件下,增加微通道深度会导致壁温波动幅度显著增加,从而降低传热性能。此外,研究表明压降明显依赖于冷却剂流量和两种微通道尺寸。这项研究为优化 MCHS 设计以增强热管理提供了新的见解,强调了微通道深度在缓解流动沸腾不稳定性以及提高整体传热效率方面的关键作用。
为了遵守省级立法,我们询问住户是否愿意参加质量保证回访,以核实住户人数。我们随机选择了回答“是”的家庭进行回访,以确保所收集人口普查信息的质量和准确性。在提供回访号码的 3,150 户住户中,我们联系了 625 户。其中,有 5 户的住户人数进行了更正,错误率为 0.08%,表明错误率非常低,所收集数据准确性很高。
目标的确定麻醉深度已被用来评估在电击疗法(ECT)中应用电刺激的最佳力矩,因为所使用的某些抗厌含剂可以降低其有效性。在这项研究中,使用患者状态指数(PSI)使用麻醉深度测量来评估癫痫发作质量。方法对对照组进行了前瞻性实验研究,其中包括51例患者的346个刺激样本(PSI = 134;对照= 212),并患有主要抑郁症。癫痫发作的足够变量(电脑图中的癫痫发作时间[EEG]和动物活性,脑电图的视觉评估,ECT-EECT-EEG参数评级量表[EEPRS],癫痫发作一致性,中央抑制,自动抑制,自动化参数和自动激活的局限模型的连续模型是连续的,并具有连续的模型。用于二分法变量。结果PSI组需要较低的刺激能。PSI的使用与持续时间和脑电图,较高的脑电图记录,更好的癫痫发作一致性以及最大持续相干性和峰值相干时间的自动参数的较高值有关。结论使用PSI测量麻醉深度可能会减少所需的电刺激电荷,并证明用丙泊酚修饰的ECT中的癫痫发作质量。
证据将头部外伤与神经病理学的危险因素增加联系,包括对硫磺底的机械变形,后来又是与这些空间相邻的热磷酸化TAU的周围血管周围积累,与慢性创伤性脑病(CTE)相关。然而,关于在人类,特别是皮质中的轻度创伤性脑损伤(MTBI)急性阶段的微结构异常和细胞dyshomeostisis鲜为人知。为了解决这一差距,我们设计了第一个以架构动机的定量易感映射(QSM)研究,以评估跨MTBI后34个皮质区域的阳性(与铁相关)和阴性(铁蛋白,钙和蛋白质相关的)磁敏感性的区域模式。双边分析对皮质深度和曲率敏感的组间分析是在25名与运动相关的MTBI(SR-MTBI)和25个年龄匹配的男性对照的男性之间进行的。的结果表明,创伤引起的阳性易感性局灶性增加到帕拉希帕克肺沟中的浅表,血管周间空间。diamagnetism的共定位降低表明神经底物的双重病理。通过相关分析揭示,这些与MTBI相关的模式不同于与年龄相关的过程。我们的发现表明,MTBI后生物底物对生物底物的深度和曲率特异性沉积,以及在创伤相关神经变性的神经变性中,浅表沟偏见与透明质量折叠蛋白的疗法模式之间的相干性很有趣。
我们提出了D置位(D EPTH作为3D人类PO SE和S HAPE E刺激的中间代码),这是一种单阶段方法,可估计来自单个RGB图像的人姿势和Smpl-X形状参数。最近的作品将较大的模型与变压器骨架和解码器一起提高人体姿势和形状(HPS)基准的准确性。d-pose提出了一种基于视觉的ap-porach,它使用估计的人类深度映射作为HPS和利用合成数据的培训的中间表示,并在训练过程中提供了与它们一起提供的地面深度映射。尽管在合成数据集中受过培训,但D-Pose在现实世界基准数据集,EMDB和3DPW上实现了最新的性能。尽管其简单的轻巧设计和CNN主链,但它的表现优于基于VIT的模型,这些模型的模型几乎较大。d-pose代码可用:https://github.com/nvasilik/d-pose
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。
摘要。目的:本研究探讨颅内电极捕获的神经信号的语音解码。大多数先前的研究只能处理 2D 网格上的电极(即脑皮层电图或 ECoG 阵列)和来自单个患者的数据。我们的目标是设计一个深度学习模型架构,可以同时适应表面(ECoG)和深度(立体定向 EEG 或 sEEG)电极。该架构应允许使用来自多个参与者的数据进行训练,这些参与者的电极位置变化很大,并且训练后的模型应该在训练期间未见过的参与者身上表现良好。方法:我们提出了一种名为 SwinTW 的新型基于变压器的模型架构,该架构可以利用任意位置的电极在皮层上的 3D 位置而不是它们在 2D 网格上的位置来处理它们。我们使用来自单个参与者的数据训练特定于主题的模型,并利用来自多个参与者的数据训练多患者模型。主要结果:仅使用低密度 8x8 ECoG 数据的受试者特定模型在 N=43 名参与者中实现了高解码皮尔逊相关系数与地面实况频谱图 (PCC=0.817),优于我们之前的卷积 ResNet 模型和 3D Swin Transformer 模型。在每个参与者 (N=39) 中加入额外的条带、深度和网格电极可带来进一步的改进 (PCC=0.838)。对于只有 sEEG 电极的参与者 (N=9),受试者特定模型仍然具有可比的性能,平均 PCC=0.798。多受试者模型在看不见的参与者身上实现了高性能,在留一交叉验证中平均 PCC=0.765。意义:提出的 SwinTW 解码器使未来的语音神经假体能够利用任何对特定参与者来说临床上最佳或可行的电极位置,包括仅使用更常规的深度电极