摘要 — 在癫痫监测中,由于脑电图伪影在幅度和频率上具有形态相似性,因此经常被误认为是癫痫发作,这使得癫痫发作检测系统容易受到更高的误报率的影响。在这项工作中,我们介绍了一种基于并行超低功耗 (PULP) 嵌入式平台上最少数量的脑电图通道的伪影检测算法的实现。分析基于 TUH 脑电图伪影语料库数据集,并重点关注颞电极。首先,我们使用自动机器学习框架在频域中提取最佳特征模型,在 4 个颞脑电图通道设置下实现了 93.95% 的准确率和 0.838 F1 得分。所实现的准确率水平比最先进的水平高出近 20%。然后,这些算法针对 PULP 平台进行并行化和优化,与最先进的低功耗伪影检测框架实现相比,能效提高了 5.21 倍。将此模型与低功耗癫痫发作检测算法相结合,可以在可穿戴外形尺寸和功率预算下使用 300 mAh 电池进行 300 小时的连续监测。这些结果为实现经济实惠、可穿戴、长期癫痫监测解决方案铺平了道路,该解决方案具有低假阳性率和高灵敏度,可满足患者和护理人员的要求。临床意义——所提出的 EEG 伪影检测框架可用于可穿戴 EEG 记录设备,结合基于 EEG 的癫痫发作检测算法,以提高癫痫发作检测场景的稳健性。索引词——医疗保健、时间序列分类、智能边缘计算、机器学习、深度学习
尽管最近的研究通过深度学习技术突破了极限,但从 3D 点云中进行物体检测仍然是一项具有挑战性的任务。由于严重的空间遮挡和点密度随到传感器距离的固有变化,同一物体在点云数据中的外观会有很大变化。因此,设计针对这种外观变化的鲁棒特征表示是 3D 物体检测方法的关键问题。在本文中,我们创新地提出了一种类似域自适应的方法来增强特征表示的鲁棒性。更具体地说,我们弥合了特征来自真实场景的感知域和特征从由富含详细信息的非遮挡点云组成的增强场景中提取的概念域之间的差距。这种领域自适应方法模仿了人脑在进行物体感知时的功能。大量实验表明,我们简单而有效的方法从根本上提高了 3D 点云物体检测的性能并取得了最先进的结果。
大脑中线移位(MLS)是一种定性和定量的放射学特征,它可以衡量脑中线结构的横向移位,以响应由血肿,肿瘤,脓肿或任何其他占据脑膜内病变引起的质量效应。可以使用其他参数来确定神经外科干预的紧迫性,并预测占据病变的患者的临床结果。然而,由于跨病例的临床相关大脑结构的差异很大,因此精确检测和量化MLS可能具有挑战性。在这项研究中,我们通过使用分类和分割网络架构来研究了由病例级MLS检测以及脑部标记位置的初始定位以及对脑部标记位置的最初定位和完善的级联网络管道。我们使用3D U-NET进行初始定位,然后使用2D U-NET来估计更精确的分辨率的确切地标点。在改进步骤中,我们从多个切片中融合了预测,以计算每个地标的最终位置。,我们用大脑的解剖标记产生的高斯热图目标训练了这两个UNET。案例级别的地面真相标签和地标注释是由多个训练有素的注释者产生的,并由放射学技术人员和放射科医生进行了审查。我们提出的管道实现了使用2,545个头部非对比度计算的测试数据集在AUC中的情况级MLS检测性能
摘要:焦虑症 (AD) 是一种主要的精神疾病。然而,由于 AD 的症状和混杂因素很多,很难诊断,患者长期得不到治疗。因此,研究人员对非侵入性生物信号的兴趣日益浓厚,例如脑电图 (EEG)、心电图 (ECG)、皮肤电反应 (EDA) 和呼吸 (RSP)。将机器学习应用于这些信号使临床医生能够识别焦虑模式并区分病人和健康人。此外,已经开发了具有多种不同生物信号的模型,以提高准确性和便利性。本文回顾并总结了 2012 年至 2022 年发表的将不同的机器学习算法应用于各种生物信号的研究。在此过程中,它提供了当前发展优缺点的观点,以指导未来焦虑检测的进步。具体而言,这篇文献综述表明,对于样本量为 10 至 102 名参与者的研究,测量准确度在 55% 至 98% 之间,非常有希望。平均而言,仅使用 EEG 的研究似乎获得了最佳性能,但使用 EDA、RSP 和心率可获得最准确的结果。随机森林和支持向量机被发现是广泛使用的机器学习方法,只要进行了特征选择,它们就会产生良好的结果。神经网络也被广泛使用,并提供良好的准确性,其优点是不需要进行特征选择。这篇综述还评论了模态的有效组合以及检测焦虑的不同模型的成功。
摘要 — 寻找合适的停车位是一个具有挑战性的问题,尤其是在大城市。随着汽车保有量的增加,停车位变得越来越稀缺。对这些停车位的需求不断增长,再加上有限的停车位,导致了供需失衡。缺乏足够的停车管理系统导致许多街道上到处都是非法停放的汽车。需要一个可扩展、可靠、高效的停车管理系统来解决这个问题。基于深度学习的计算机视觉技术已经成为解决此类问题的有希望的解决方案。这些技术对图像识别和处理领域产生了巨大的影响。它们还为车辆跟踪领域的进一步应用提供了巨大的潜力。因此,它们可以用来检测停车位。
摘要:神经递质 (NT) 是人类大脑正常运作所必需的化学信使,在人体生理系统中具有特定的浓度。其浓度的任何波动都可能导致多种神经元疾病和障碍。因此,对快速有效的诊断以调节和管理人类大脑疾病或状况的需求正在迅速增加。NT 可以从天然产物中提取。研究人员已经开发出新的协议来提高传感器的传感能力和环保性。深共晶溶剂 (DES) 已成为可持续化学中广受欢迎的“绿色溶剂”。DES 提供了更大的电位窗口范围,有助于增强传感器的电催化性能,并且具有更高的惰性,有助于电极的腐蚀保护,最终为系统提供更好的灵敏度和耐用性。此外,DES 可在工作电极上轻松电沉积不同的材料,这是电催化传感器的主要先决条件。本文首次详细描述了 DES 作为绿色溶剂在检测和提取 NT 中的应用。我们涵盖了截至 2022 年 12 月有关 NT 提取和监测的在线文章。最后,我们总结了该主题并展望了该领域的未来。
摘要 建筑外围护结构中的空气泄漏是建筑物供暖和制冷需求的很大一部分原因。因此,快速可靠地检测泄漏对于提高能源效率至关重要。本文介绍了一种从外部确定建筑外围护结构中空气泄漏的新方法,将锁定热成像和鼓风机门系统的热激发相结合。鼓风机在建筑物内产生周期性的过压,导致外表面(立面)泄漏附近的表面温度发生周期性变化。通过以已知频率激发的温度变化,以激发频率对热图像的时间序列进行傅里叶变换,可得到突出显示泄漏影响区域的幅度和相位图像。红外摄像机的周期性激发和检测称为锁定热成像,广泛用于表征半导体器件和无损检测。激发通常通过光、电或机械能量输入实现。在本研究中,在 75 Pa 压差下,以三个 40 秒的激励周期对外墙进行了测量,总测量时间仅为 2 分钟。在光照、风和云量变化很大的条件下,空气温差为 5 至 7 K 时进行了测量。与最先进的差分红外热成像测量相比,测量结果显示检测质量更高,受环境条件变化的影响更小。该方法仅在激励频率下突出显示振幅图像的变化,从而过滤掉由环境影响引起的变化。因此,低至几开尔文的温差就足够了,可以从外部检查大型外墙。该振幅图像已经比用差分热成像创建的图像更清晰。使用标量积对振幅进行相位加权,可以进一步减少图像中不需要的伪影。关键词 锁定、热成像、鼓风机门、气密性、泄漏检测、建筑围护结构、建筑节能 1 引言 不受控制的气流通过建筑围护结构,造成 30-50% 的建筑物供暖能耗 (Kalamees,2007 年;Jokisalo 等人,2009 年;Jones 等人,2015 年)。因此,气密性评估,特别是快速可靠地定位泄漏,对于减少供暖能源需求至关重要。风扇加压法或鼓风机门测试在多项国际标准 (Deutsches Institut für Normung e. V.,2018 年;ASTM,2019 年) 中有规定,用于测量建筑物的整体气密性。然而,泄漏定位很麻烦,需要
可穿戴机器人上肢矫形器 (ULO) 是辅助或增强用户上肢功能的有前途的工具。虽然这些设备的功能不断增加,但对用户控制可用自由度的意图的稳健和可靠检测仍然是一项重大挑战,也是接受的障碍。作为设备和用户之间的信息接口,意图检测策略 (IDS) 对整个设备的可用性具有至关重要的影响。然而,这方面及其对设备可用性的影响很少根据 ULO 的使用环境进行评估。进行了范围界定文献综述,以确定已通过人类参与者评估的应用于 ULO 的非侵入式 IDS,特别关注与功能和可用性相关的评估方法和发现及其在日常生活中特定使用环境的适用性。共确定了 93 项研究,描述了 29 种不同的 IDS,并根据四级分类方案进行了总结和分类。与所述 IDS 相关的主要用户输入信号是肌电图 (35.6%),其次是手动触发器,例如按钮、触摸屏或操纵杆 (16.7%),以及上肢节段的残余运动产生的等长力 (15.1%)。我们确定并讨论了 IDS 在特定使用环境中的优缺点,并强调了在选择最佳 IDS 时性能和复杂性之间的权衡。通过调查评估实践来研究 IDS 的可用性,纳入的研究表明,主要评估了与有效性或效率相关的客观和定量的可用性属性。此外,它强调了缺乏系统的方法来确定 IDS 的可用性是否足够高以适合用于日常生活应用。这项工作强调了针对用户和应用程序选择和评估用于 ULO 的非侵入式 IDS 的重要性。对于该领域的技术开发人员,它进一步提供了有关IDS的选择过程以及相应评估协议的设计的建议。
X射线照相成像方案集中在特定的身体区域上,因此产生了相似性的图像并产生跨染料的复发性解剖结构。为了利用这些结构化信息,我们建议使用空间感知的记忆队列在射线照相图像(缩写为squid)中进行镶嵌和检测异常。我们表明,鱿鱼可以将无网状的解剖结构分类为复发模式。在推论中,它可以识别图像中的异常(未见/修改模式)。squid在无监督的异常检测中超过了13种最先进的方法,在两个胸部X射线基准数据集中至少在曲线下测量的两个胸部X射线基准数据集(AUC)。此外,我们还制定了一个新的数据集(数字解剖),该数据集综合了胸部解剖结构的空间相关性和一致的形状。我们希望数字解剖学能够促使异常检测方法的开发,评估和解释性。
近年来,基于深度学习的目标检测取得了长足的进步。然而,由于域转移问题,将现成的检测器应用于看不见的域会导致性能大幅下降。为了解决这个问题,本文提出了一种新的由粗到细的特征自适应方法用于跨域目标检测。在粗粒度阶段,与文献中使用的粗糙的图像级或实例级特征对齐不同,采用注意机制提取前景区域,并通过在公共特征空间中多层对抗学习根据其边缘分布进行对齐。在细粒度阶段,我们通过最小化来自不同域但属于同一类别的全局原型的距离来进行前景的条件分布对齐。由于这种由粗到细的特征自适应,前景区域中的领域知识可以得到有效的迁移。在各种跨域检测场景中进行了大量的实验。结果是最先进的,证明了所提出方法的广泛适用性和有效性。