Flipping the orientation of all arcs in a digraph (denoted by ←− D ) does not change the directed Zagreb indices: #» M 1 ( D ) = #» M 1 ( ←− D ) and #» M 2 ( D ) = #» M 2 ( ←− D )
对称性对称性以及我们对能量和兰德指数变化的定义,我们需要适应我们的方法。特别是我们定义与内部和外部程度相关的内部和外部能量。为了描述我们使用的(1)中的相等性,我们所谓的遗传化技巧,将挖掘物的能量与两部分图的能量相关联。此外,该技术允许为定理6和9提供另一个证据。除了本介绍之外,该论文的组织如下。在第2节中,我们介绍了Nikiforov定义的Digraph的能量。我们还定义了顶点e +(v)的外能和顶点e-(v)的内能,并证明对于相邻的顶点e +(v i)e-(v j)≥1。在第3节中,我们证明了本文的主要结果,即(1)中的不平等现象及其相应的Randic指数和能量。第4节致力于冬宫化技巧。我们使用这种技术给出了本文主要定理的另一个证明,并描述了(1)中平等性充分填写的图。
摘要让D为简单的Digraph(有向图),带有顶点s v(d)和弧集a(d),其中n = | v(d)| ,每个弧都是有序的一对不同的顶点。如果(v,u)∈A(d),则u被视为d中V的邻居。最初,我们将每个顶点指定为已填写或为空。然后,应用以下颜色更改规则(CCR):如果一个填充的顶点V具有一个空的邻居U,则U将被填写。如果V(d)中的所有顶点最终都在CCR的重复应用下填写,则初始集合称为零强迫集(ZFS);如果不是,那是失败的零强迫集(FZFS)。我们在Digraph上介绍了零强迫f(d),这是任何FZF的最大基数。零强制数z(d)是任何ZF的最小基数。我们表征具有f(d) 我们还用f(d)= n -1,f(d)= n -2和f(d)= 0表征挖掘,这导致了任何顶点是ZFS的挖掘物的表征。 最后,我们表明,对于任何整数n≥3和具有k我们还用f(d)= n -1,f(d)= n -2和f(d)= 0表征挖掘,这导致了任何顶点是ZFS的挖掘物的表征。最后,我们表明,对于任何整数n≥3和具有k
现有的四平方密码,特别是具有锯齿形变换加密算法的四平方英尺,是本研究的基础,旨在解决其加密限制。现有算法无法用数字和特殊字符加密消息,可以轻松破解键,当该过程重复超过26次时,加密的Digraph与第一个加密的Digraph相同。本研究旨在通过转换5x5矩阵,增强加密解码密钥并改善锯齿形变换来增强现有算法。所采用的方法涉及利用6x6x6立方体来包括大写字母和小写字母,数字和特殊字符。随机加密 - 解码密钥是使用密码固定的伪数字发生器(CSPRNG),斐波那契序列,tribonacci序列和线性反馈移位寄存器生成的。锯齿形变换通过采用rubik的立方体原理,csprng,斐波那契序列和tribonacci序列来改善,以随机化立方体旋转。进行了各种测试以评估增强算法。矩阵比较测试显示了角色集的显着扩展,允许大写和小写字母,数字和特殊字符的利用。加密和解密的文本的比较突出了增强算法将密文归还到原始明文中的能力,超过了现有算法的局限性。增强算法的平均雪崩效应为52.78%,超过了安全的加密算法的最小雪崩效应。统计随机性测试,包括频率(单算)和运行测试,提供了算法随机性的强大证据,满足了安全加密的阈值。
b“极值图论的一个核心问题是确定给定图 H 在 \xef\xac\x81x 大小的图中诱导副本的最大数量。这个问题最早由 Pippenger 和 Golumbic [13] 研究,近年来已成为广泛研究的主题 [2, 3, 7, 8, 11, 18]。本文重点关注有向图的类似问题。准确地说,设 H 是有向图。有向图 G 中 H 的诱导密度,表示为 i ( H, G ),是 G 中 H 的诱导副本数量除以 | V ( G ) | | V ( H ) | 。对于整数 n ,设 i ( H, n ) 为所有 n 顶点有向图 G 中 i ( H, G ) 的最大值。H 的诱导性定义为为 i ( H ) = lim n \xe2\x86\x92\xe2\x88\x9e i ( H, n )。当 i ( H, n ) 对于 n \xe2\x89\xa5 2 递减时,此极限存在。只有极少数有向图的可诱导性是已知的。一类重要的例子是有向星号。对于非负整数 k 和 \xe2\x84\x93 ,让有向星号 S k,\xe2\x84\x93 为通过对具有 k + \xe2\x84\x93 叶子的星号的边进行有向图,使得中心具有出度 k 和入度 \xe2\x84\x93 。有向星形是所有边都具有相同方向的定向星形,即星形 S k,\xe2\x84\x93 ,使得 k = 0 或 \xe2\x84\x93 = 0。S 2 , 0 和 S 3 , 0 的可诱导性由 Falgas-Ravry 和 Vaughan [5] 确定。为了解决 [5] 中的一个猜想,Huang [10] 扩展了他们的结果,确定了对所有 k \xe2\x89\xa5 2 的 S k, 0 的可诱导性,表明它是通过对入度为 0 的部分进行不平衡的弧爆破而渐近获得的。注意,由于任何有向图的可诱导性等于通过反转所有弧得到的有向图的可诱导性,因此可以考虑有向星号 S k,\xe2\x84\x93 ,使得 k \xe2\x89\xa5 \xe2\x84\x93 。特别地,Huang 的结果还确定了对所有 \xe2\x84\x93 的 S 0 ,\xe2\x84\x93 的可诱导性。 [10] 的结果未涵盖的最小定向星是 S 1 , 1 ,即三个顶点上的有向路径。Thomass\xc2\xb4e [16,猜想 6.32] 猜想 i ( S 1 , 1 ) = 2 / 5,这是通过四个顶点上的有向环的迭代爆炸获得的。
有符号有向图 (或简称 sidigraph) 由一对 S = ( D , σ ) 组成,其中 D = ( V , A ) 为基础有向图,σ : A →{ 1 , − 1 } 是有符号函数。带有 +1 ( − 1) 符号的弧称为 S 的正 (负) 弧。一般而言,S 的弧称为有符号弧。sidigraph 的符号定义为其弧符号的乘积。如果 sidigraph 的符号为正 (负),则称其为正 (负)。如果 sidigraph 的所有弧均为正 (负),则称其为全正 (全负)。如果 sidigraph 的每个环均为正,则称其为环平衡的,否则为非环平衡的。在本文中,我们假设环平衡(非环平衡)环为正(负)环,并用 C + n(C − n)表示,其中 n 是顶点数。对于有向图,我们用 uv 表示从顶点 u 到顶点 v 的弧。顶点集 { vi | i = 1 , 2 , ... , n } 和有符号弧集 { vivi + 1 | i = 1 , 2 , ... , n − 1 } 组成有向路径 P n 。顶点集 { vi | i = 1 , 2 , ... , n } 和有符号弧集 { vivi + 1 | i = 1 , 2 , ... , n − 1 } 组成有向路径 P n 。 , n − 1 } ∪{ vnv 1 } 组成一个有向圈 C n 。如果 sidigraph 的底层图是连通的,则该 sidigraph 是连通的。如果连通的 sidigraph 包含唯一的单个有向圈,则它是单环 sidigraph。如果连通的 sidigraph 恰好包含两个单个有向圈,则它是双环 sidigraph。我们考虑具有 n ( n ≥ 4) 个顶点的双环有符号有向图类 S n ,它的两个有符号有向偶圈是顶点不相交的。对于 sidigraph S = ( D , σ ),如果它有一条从 u 到 v 的有向路径和一条从 v 到 u 的有向路径,其中 ∀ u , v ∈V ,那么它是强连通的。S 的最大强连通子图称为 sidigraph S 的强组件。
自1978年以来,构思了基于邻接矩阵的特征值的图能量概念[5]时,已经提出了许多其他“图形能量”。如今,它们的数量接近200 [6,7]。几乎所有这些“图形能量”都是基于各种图矩阵的特征值,与邻接矩阵不同。在本文中,我们考虑了另一种“图形能量”,与早期的能量相比,该论文具有群体理论的根源,并使用了邻接矩阵的特征值。令G为n阶的Digraph(有向图)。让V(g)= {V 1,V 2,。。。,v n}是顶点集,e(g)g的边缘集。由e ij构成的是从顶点v i开始的G的定向边缘,并在Vertex v j结束。 G的邻接矩阵是由定义的N×N矩阵A(g)是从顶点v i开始的G的定向边缘,并在Vertex v j结束。G的邻接矩阵是由