我们研究了Erd˝os-r´enyi(er)随机挖掘D(n,p)的某些拓扑和光谱特性。就拓扑特性而言,我们的主要重点在于分析非孤立顶点v x(d)的数量以及两个基于顶点的拓扑指数:randi´c index r(d)和sum-connectivity指数指数χ(d)。首先,通过执行缩放分析,我们表明平均度k⟩是V x(d),r(d)和χ(d)的平均值的缩放参数。然后,我们还陈述了弧度,频谱半径和长度2至(n,p)的闭合步行的表达式,即ER随机挖掘的参数。关于光谱特性,我们在d(n,p)上计算了六个不同的图形能。我们首先验证⟨k⟩作为图形能量的缩放参数。此外,我们重新制定了这些能量作为功能的文献中先前报道的一组界限(n,p)。最后,我们在现象学上表达了能量之间的关系,使我们能够扩展以前已知的界限。
b“极值图论的一个核心问题是确定给定图 H 在 \xef\xac\x81x 大小的图中诱导副本的最大数量。这个问题最早由 Pippenger 和 Golumbic [13] 研究,近年来已成为广泛研究的主题 [2, 3, 7, 8, 11, 18]。本文重点关注有向图的类似问题。准确地说,设 H 是有向图。有向图 G 中 H 的诱导密度,表示为 i ( H, G ),是 G 中 H 的诱导副本数量除以 | V ( G ) | | V ( H ) | 。对于整数 n ,设 i ( H, n ) 为所有 n 顶点有向图 G 中 i ( H, G ) 的最大值。H 的诱导性定义为为 i ( H ) = lim n \xe2\x86\x92\xe2\x88\x9e i ( H, n )。当 i ( H, n ) 对于 n \xe2\x89\xa5 2 递减时,此极限存在。只有极少数有向图的可诱导性是已知的。一类重要的例子是有向星号。对于非负整数 k 和 \xe2\x84\x93 ,让有向星号 S k,\xe2\x84\x93 为通过对具有 k + \xe2\x84\x93 叶子的星号的边进行有向图,使得中心具有出度 k 和入度 \xe2\x84\x93 。有向星形是所有边都具有相同方向的定向星形,即星形 S k,\xe2\x84\x93 ,使得 k = 0 或 \xe2\x84\x93 = 0。S 2 , 0 和 S 3 , 0 的可诱导性由 Falgas-Ravry 和 Vaughan [5] 确定。为了解决 [5] 中的一个猜想,Huang [10] 扩展了他们的结果,确定了对所有 k \xe2\x89\xa5 2 的 S k, 0 的可诱导性,表明它是通过对入度为 0 的部分进行不平衡的弧爆破而渐近获得的。注意,由于任何有向图的可诱导性等于通过反转所有弧得到的有向图的可诱导性,因此可以考虑有向星号 S k,\xe2\x84\x93 ,使得 k \xe2\x89\xa5 \xe2\x84\x93 。特别地,Huang 的结果还确定了对所有 \xe2\x84\x93 的 S 0 ,\xe2\x84\x93 的可诱导性。 [10] 的结果未涵盖的最小定向星是 S 1 , 1 ,即三个顶点上的有向路径。Thomass\xc2\xb4e [16,猜想 6.32] 猜想 i ( S 1 , 1 ) = 2 / 5,这是通过四个顶点上的有向环的迭代爆炸获得的。
对称性对称性以及我们对能量和兰德指数变化的定义,我们需要适应我们的方法。特别是我们定义与内部和外部程度相关的内部和外部能量。为了描述我们使用的(1)中的相等性,我们所谓的遗传化技巧,将挖掘物的能量与两部分图的能量相关联。此外,该技术允许为定理6和9提供另一个证据。除了本介绍之外,该论文的组织如下。在第2节中,我们介绍了Nikiforov定义的Digraph的能量。我们还定义了顶点e +(v)的外能和顶点e-(v)的内能,并证明对于相邻的顶点e +(v i)e-(v j)≥1。在第3节中,我们证明了本文的主要结果,即(1)中的不平等现象及其相应的Randic指数和能量。第4节致力于冬宫化技巧。我们使用这种技术给出了本文主要定理的另一个证明,并描述了(1)中平等性充分填写的图。
谱聚类是聚类无向图的一种常用方法,但将其扩展到有向图(有向图)则更具挑战性。一种典型的解决方法是简单地对称化有向图的邻接矩阵,但这可能会导致丢弃边方向性所携带的有价值信息。在本文中,我们提出了一个广义的谱聚类框架,可以处理有向图和无向图。我们的方法基于一个新泛函的谱松弛,我们将其引入为图函数的广义狄利克雷能量,关于图边上的任意正则化测度。我们还提出了一种由图上自然随机游走的迭代幂构建的正则化测度的实用参数化。我们提出了理论论据来解释我们的框架在非平衡类别的挑战性设置中的效率。使用从真实数据集构建的有向 K-NN 图进行的实验表明,我们的图分区方法在所有情况下均表现良好,并且在大多数情况下优于现有方法。