铁磁材料的固有磁性能可根据书面 IEC 60404 标准确定。当材料用作组件时,可能需要对这些固有特性进行退磁校正。这很难确定,因为它不仅取决于组件的几何形状,还取决于磁导率。对于永磁材料,可以测量磁偶极矩,该参数取决于材料特性和几何形状。这提供了重要的补充组件信息。本报告介绍了确定磁偶极矩的测量方法,并详细讨论了一种导致不确定度低至 0.1%(95% 置信限度)的方法。这种低水平的不确定度允许校准商用磁矩测量仪器。
摘要 - 大型强子对撞机(LHC)的下一个升级(称为高亮度LHC)的目的是使加速器的碰撞率提高十倍。为了实现此目标,将更换Atlas和CMS实验相互作用区域之前和之后的偶极子和四极磁体。其中之一是分离重组偶极子MBRD,该偶极子MBRD的目标积分磁场为35 t·m的双孔径为105 mm,沿磁场沿4.78 m的磁场获得4.5 t。该磁铁开发的主要挑战之一是,这两个孔必须具有相同的极性,这会导致它们之间的磁串扰。因此,有必要为线圈开发左/右不对称的孔圈线圈设计,以补偿这种效果,这将产生不良的多物。另一个与两个孔径的极性相关的问题,这是通过在两个领孔周围组装的Al Alloy套筒的实现来管理的。该设计是在Cern-Infn Genova协议的框架内进行的,该行业的ASG超导体正在进行。1.6 m长的模型是建立并成功测试的,然后建造了一个全长原型,该原型最近交付给了CERN,而预计将在2022年初开始构建6个磁铁系列。此贡献将描述原型组装状态,还涵盖了领域的质量(FQ)方面,讨论了ASG的温暖磁性测量结果及其在谐波含量方面的含义。
硅自旋量子比特的最新进展增强了它们作为可扩展量子信息处理平台的地位。随着单量子比特门保真度超过 99.9% [1],双量子比特门保真度不断提高[2-6],以及该领域向大型多量子比特阵列发展的步伐[7,8],开发高效、可扩展的自旋控制所需的工具至关重要[9]。虽然可以利用交流磁场在量子点 (QDs) 中实现单电子自旋共振 [10],但所需的高驱动功率和相关热负荷在技术上具有挑战性,并限制了可达到的拉比频率 [11]。随着自旋系统扩展到几个量子比特以外,最小化耗散和减少量子比特串扰的自旋控制方法对于低温量子信息处理将非常重要 [12]。电偶极自旋共振 (EDSR) 是传统电子自旋共振的一种替代方法。在 EDSR 中,静态梯度磁场和振荡电场用于驱动自旋旋转 [13]。有效磁场梯度的来源因实现方式而异:本征自旋轨道耦合 [14-16]、超精细耦合 [17] 和 g 因子调制 [18] 已用于将电场耦合到自旋态。微磁体产生的非均匀磁场 [19, 20] 已用于为 EDSR 创建合成自旋轨道场,从而实现高保真控制 [1]。方便的是,该磁场梯度产生了一个空间自旋轨道场。
有机分子与纳米级腔的真空场的强耦合可用于修饰其化学和物理性质。我们扩展了分子集合的Tavis – Cummings模型,并表明,静态偶极矩和偶极子自我能量产生的经常被忽视的相互作用术语对于正确描述了极化化学中的光 - 肌肉交互作用至关重要。在完整的量子描述的基础上,我们模拟了MGH +分子的激发态动力学和光谱,并共偶联与光腔。我们表明,对于获得一致的模型来说,必须包含静态偶极矩和偶极子自我能量。我们构建了一种有效的两级系统方法,该方法重现了真实分子系统的主要特征,可用于模拟较大的分子集合。
摘要 - 这项工作着重于在国际Muon Collider合作(IMCC)框架内研究的MUON对撞机加速器的电阻偶极子磁铁的设计以及欧盟(Mucol Pro-gram)的参与。设计规格要求这些偶极子被列为非常快速的坡道,坡道时间在1 ms到10 ms的范围内。这反过来又导致需要非常高的功率,以数十GW的顺序为需要实现的快速循环同步性(RC)链。对于磁铁设计,考虑了三种几何配置,并在这项研究中进行了比较,即沙漏磁铁(以前在美国Muon Collider设计研究中考虑),窗框磁铁和H型磁铁。进行了优化程序,以最大程度地减少磁铁中存储的能量,以降低快速坡道期间的能量。根据总存储能量,运营量周期中的总损失和现场质量,比较了本文中三种考虑的配置的结果。由于低储存能量和低损耗,H型磁铁被识别为适合配置。
摘要:表现出激素耦合的有机染料的聚集体具有广泛的应用,包括医学成像,有机光伏和量子信息设备。可以修改染料单体的光学特性,作为染料骨料的基础,以增强激子耦合。Squaraine(SQ)染料对于这些应用的吸光度很强,在可见范围内具有吸引力。先前已经检查了取代基类型对SQ染料光学特性的影响,但尚未研究各种取代基因位置的影响。在这项研究中,使用密度功能理论(DFT)和时间依赖性密度功能理论(TD-DFT)来研究SQ取代的位置与染料聚集系统性能性能的几个关键特性,即差静态偶极子(∆ D),过渡次要次偶极力矩(µ),Hydrophobicition和Hydrophobicity和the grout(ΔD)。我们发现,沿染料的长轴连接取代基可能会增加µ,而放置长轴则显示出增加∆ d并减少θ。θ的降低很大程度上是由于∆ d方向的变化,因为µ的方向不受取代位置的显着影响。疏水性降低时,当电子粉状取代基靠近吲哚美氨酸环的氮。这些结果提供了对SQ染料的结构与毛皮关系的见解,并指导染料单体的设计,用于具有所需属性和性能的聚集系统。
量子信息产生是由量化场和低维原子系统之间的相互作用引起的,这是量子理论中最热门的主题之一[1]。RABI模型是描述原子系统与量化字段之间相互作用的第一个模型,它研究了两个水平原子与理想的腔场之间的相干性[2]。jaynes-cummings(JC) - 模型是另一个简单的模型,它描述了旋转波近似下的原子局部相互作用[3]。从那时起,JC模型就开始了概括,包括量化字段或原子系统或全部的概括。例如,讨论了信息生成诱导多光子JC模型和两级原子之间的相互作用[4]。研究了在经典场和Kerr样培养基的存在下移动的两级原子和多光子的纠缠和非经典相关性[5,6]。研究了非线性SU(1,1)和SU(2)量子系统的相干性和断层摄影熵[7]。最近,检查了外部环境对原子局部相互作用的影响,例如,恒星移位[8、9、10],振动石墨烯片[11]和光力学腔[12、13]。