这也使得直接在原子水平上研究酶反应的整个过程成为可能,为酶学的新领域打开了大门。这将是根据反应中间体的结构(即酶的真实活性状态)合理设计催化剂和药物的第一步。 出版信息 标题:在原子分辨率下可视化光裂解酶的 DNA 修复过程 作者:Manuel Maestre-Reyna*、Po-Hsun Wang、Eriko Nango、Yuhei Hosokawa、Martin Saft、Antonia Furrer、Cheng-Han Yang、Eka Putra Gusti Ngurah Putu、Wen-Jin Wu、Hans-Joachim Emmerich、Nicolas Caramello、Sophie Franz-Badur、Chao Yang、Sylvain Engilberge、Maximilian Wranik、Hannah Louise Glover、Tobias Weinert、Hsiang-Yi Wu、Cheng-Chung Lee、Wei-Cheng Huang、Kai-Fa Huang、Yao-Kai Chang、Jianh-Haur Liao、Jui-Hung Weng、Wael Gad、Chiung-Wen Chang、Allan H. Pang、Kai-Chun Yang、Wei-Ting Lin、 Yu-Chen Chang、Dardan Gashi、Emma Beale、Dmitry Ozerov、Karol Nass、Gregor Knopp、Philip JM Johnson、Claudio Cirelli、Chris Milne、Camila Bacellar、Michihiro Sugahara、Shigeki Owada、Yasumasa Joti、Ayumi Yamashita、Rie Tanaka、Tomoyuki Tanaka、Fangjia Luo、Kensuke Tono、Wiktoria Zarzycka、Pavel Müller、Maisa Alkheder Alahmad、Filipp Bezold、Valerie Fuchs、Petra Gnau、Stephan Kiontke、Lukas Korf、Viktoria Reithofer、Christian Joshua Rosner、Elisa Marie Seiler、Mohamed Watad、Laura Werel、Roberta Spadaccini、Junpei Yamamoto、So Iwata、Dongping Zhong、Joerg Standfuss、Antoine Royant、Yoshitaka Bessho*, Lars-Oliver Essen*, Ming-Daw Tsai* <杂志> Science < DOI > 10.1126/science.add7795 补充信息 [1] X射线自由电子激光器(XFEL)
国际计划委员会:海蒂·亚伯拉罕斯堡,约翰内斯堡大学,RSA,RSA,范德利·萨尔瓦多·巴格纳托,巴西圣保罗大学,沃尔特·布朗德尔大学,洛林(法国),韦伊·陈大学,韦伊·陈大学,美国中央俄克拉荷马大学(美国),美国卫生学院,曼尼普·曼尼普·曼尼普(Santhosh Chidangol),安德鲁斯(英国),玛丽亚·法尔萨里(Maria Farsari),前往希腊(希腊),Paul M.W.法语,帝国科学,技术与医学学院(英国),Mikhail Yu。Kirillin,应用物理研究所RAS,尼兹尼·诺夫哥罗德(俄罗斯),尤里·基斯内维(Yury V. Kistenev),汤姆斯克州立大学(俄罗斯),基里尔·拉林(Kirill V. Larin意大利国家研究委员会(CNR)(意大利),Juergen Popp,Inst。Photonic Technology,Jena(德国),Alexander V. Priezzhev,莫斯科州立大学。Photonic Technology,Jena(德国),Alexander V. Priezzhev,莫斯科州立大学。(俄罗斯),Lihong Wang,Caltech(美国),Ruikang K. Wang,华盛顿大学(美国),Valery P. Zakharov,Samara州立大学(俄罗斯),Zeev Zalevsky,Zeev Zalevsky,Bar Ilan University,Tel Aviv(以色列) Alexander P. Kuznetsov,拉斯(俄罗斯)无线电研究所(俄罗斯),玛丽安·马西尼克(Marian Marciniak),国家电信研究所(波兰)(波兰),莱昂尼德·A·梅尔尼科夫(Leonid A.大学,IPM&C RAS(俄罗斯),Alexander P. Nizovtsev,NASB物理研究所(Belarus),Sergue I. Vinitsky,核研究所联合研究所(俄罗斯),Aleksey M. Zheltikov,Aleksey M. Zheltikov,Lomonosov Moscow Moscow莫斯科州立大学(俄罗斯)萨拉托夫州立大学(俄罗斯)Churochkin。
教授博士Ayhan EROL/阿菲永科卡特佩大学教授博士Ahmad I. AYESH/卡塔尔大学,卡塔尔教授博士Ali GUNGOR/卡拉布克大学副教授教授博士Aisha IHSAN/国家研究所巴基斯坦生物技术与工程学教授博士艺术。 A. Ali 教授/吉大港大学博士Alpay OZER/加齐大学教授博士N. Alper TAPAN/加齐大学教授博士Ammar NAYFEH / 阿联酋哈利法大学副教授教授博士Ayhan ORHAN/菲拉特大学教授博士Andrei Kovalevsky/阿威罗大学/PT Assoc.教授博士Gokhan SURUCU/Gazi 大学副教授教授博士Ersin BAHCECI/伊斯肯德伦技术大学副教授教授博士Abdullah CANDAN/Kirsehir Ahi Evran 大学教授博士Aytunç ATES/A. Yildirimbeyazit 大学副教授教授博士Aytac ERKISI/帕穆卡莱大学副教授教授博士Babek ERDEBILLI/A. Yildirim Beyazit 大学副教授教授博士Battal DOGAN/加齐大学教授博士Bekir OZCELIK/库库罗瓦大学副教授教授博士Bilge IMER/中东技术大学教授博士Bulent YESILATA/A. Yildirim Beyazit 大学教授博士S. Bora 高中视频/Gazi 大学教授博士C. SURYANARAYANA 教授/美国奥兰多中佛罗里达大学博士Canan VARLIKLI/伊兹密尔理工学院教授博士Dmitry GORIN /SCP& QM 斯科尔科沃研究所科学的和技术,俄罗斯教授博士Emine ALDIRMAZ/阿马西亚大学教授博士Guven CANKAYA/ A. Yildirim Beyazid 大学 / Roketsan Assoc.教授博士Fatih CALISKAN/萨卡里亚应用科学大学
何文伟博士现为斯坦福大学理论物理研究所博士后学者,研究非平衡量子多体现象和新兴量子技术的应用。此前,他是哈佛大学的摩尔博士后研究员,与 Mikhail Lukin 教授和 Eugene Demler 教授一起工作。从 2022 年 8 月开始,他将担任新加坡国立大学校长青年(助理)教授。何文伟于 2017 年在日内瓦大学师从 Dmitry Abanin 教授获得博士学位,2015 年在滑铁卢大学/圆周研究所师从 Guifre Vidal 教授获得理学硕士学位,2013 年在普林斯顿大学获得学士学位,与 Duncan Haldane 教授一起工作。摘要:普遍性是指复杂系统普遍属性的出现,这些属性不依赖于精确的微观细节。量子热化是强相互作用量子多体系统非平衡动力学的一个例子,其中局部区域随着时间的推移变得由吉布斯集合很好地描述,而该集合仅受少数几个系统参数(例如温度和化学势)控制。局部区域与其补体(“浴”)之间产生的大量纠缠是这种普遍性出现的关键。在这次演讲中,我将介绍一种新的普遍行为,它源于某些类型的量子混沌多体动力学,超越了传统的热化。我将描述单个多体波函数如何编码由小子系统支持的纯态集合,每个纯态都与局部浴的(投影)测量结果相关。然后,我将展示这些量子态的分布如何接近均匀随机量子态的分布,即集合形成量子信息理论中所谓的“量子态设计”。我们的工作为研究量子混沌提供了一个新视角,并在量子多体物理、量子信息和随机矩阵理论之间建立了桥梁。此外,它还提供了一种实用且硬件高效的伪随机态生成方法,为设计量子态层析成像应用和近期量子设备的基准测试开辟了新途径。
上海理工大学机电工程学院,上海 200093 通讯作者,电子邮箱:fkg11@163.com 摘要 随着主轴转速的提高,发热成为高速电主轴的关键问题。为了获得电主轴的实际热行为,本文开发了热特性数字孪生系统。热特性数字孪生的原理是通过数据采集系统和修正模型映射和修正热边界条件来模拟机床的热行为。所提出的数字孪生系统包括数字孪生软件、数据采集系统和嵌入传感器的物理模型三个模块。数字孪生软件基于 Qt 使用 C++ 编程语言和 ANSYS 二次开发开发。提出热边界修正模型,利用数据采集系统测得的热关键点温度来修正发热和接触热阻。为了验证数字孪生系统的预测精度,在电主轴上进行了试验。实验结果表明,数字孪生系统预测精度大于95%,对提高热特性仿真与热优化的精度具有重要意义。 关键词 数字孪生·热特性·精度仿真·电主轴 1.引言 热行为预测在数控机床热优化中具有重要意义。电主轴是数控机床的核心,也是其主要热源。数控机床向超高速、超高精度方向发展的趋势,对电主轴热特性的精确分析提出了更严格的要求。影响主轴温度场和热变形准确预测的主要因素来自产热和接触热阻两个方面,在主轴工作过程中,产热和接触热阻都不是恒定的。由于主轴工作时伴随产热,引起热变形,使主轴零部件接触面间产生热应力,接触压力的变化使接触热阻和内部热源产热量也发生变化。为了提高热行为预测精度,热特性数字孪生成为模拟主轴单元温度场分布的最佳选择。数字孪生是指通过构建数字化虚拟实体与物理实体之间的映射关系,实现虚实映射。它将物理空间中的物理实体映射到数字空间,具有数据映射、分析决策、控制执行等功能。近年来,许多学者对数字孪生进行了卓有成效的研究工作,形成了成熟的理论体系。在理论方面,数字孪生的概念最早由Grieves教授[1]于2003年提出,随后NASA将该概念应用于阿波罗计划中的飞行器。Dmitry Kostenko等[2]研究了设备数字孪生在静态和动态领域的应用
Yifei Luo, Mohammad Reza Abidian, Jong-Hyun Ahn, Deji Akinwande, Anne M. Andrews, Markus Antonietti, Zhenan Bao, Magnus Berggren, Christopher A. Berkey, Christopher John Bettinger, Jun Chen, Peng Chen, Wenlong Cheng, Xu Cheng, Seon-Jin Choi, Alex Chortos, Canan Dagdeviren, Reinhold H. Dauskardt, Chong-an Di, Michael D. Dickey, Xiangfeng Duan, Antonio Facchetti, Zhiyong Fan, Yin Fang, Jianyou Feng, Xue Feng, Huajian Gao, Wei Gao, Xiwen Gong, Chuan Fei Guo, Xiaojun Guo, Martin C. Hartel, Zihan He, John S. Ho, Youfan Hu, Qiyao Huang, Yu Huang, Fengwei Huo, Muhammad M. Hussain, Ali Javey, Unyong Jeong, Chen Jiang, Xingyu Jiang, Jiheong Kang, Daniil Karnaushenko, Ali Khademhosseini, Dae-Hyeong Kim, Il-Doo Kim, Dmitry Kireev, Lingxuan Kong, Chengkuo Lee, Nae-Eung Lee, Pooi See Lee, Tae-Woo Lee, Fengyu Li, Jinxing Li, Cuiyuan Liang, Chwee Teck Lim, Yuanjing Lin, Darren J. Lipomi, Jia Liu, Kai Liu, Nan Liu, Ren Liu, Yuxin Liu, Yuxuan Liu, Zhiyuan Liu, Zhuangjian Liu, Xian Jun Loh, Nanshu Lu, Zhisheng Lv, Shlomo Magdassi, George G. Malliaras, Naoji Matsuhisa, Arokia Nathan, Simiao Niu, Jieming Pan, Changhyun Pang, Qibing Pei, Huisheng Peng, Dianpeng Qi, Huaying Ren, John A. Rogers, Aaron Rowe, Oliver G. Schmidt, Tsuyoshi Sekitani, Dae-Gyo Seo, Guozhen Shen, Xing Sheng, Qiongfeng Shi, Takao Someya, Yanlin Song, Eleni Stavrinidou, Meng Su, Xuemei Sun, Kuniharu Takei, Xiao-Ming Tao, Benjamin C. K. Tee, Aaron Voon-Yew Thean, Tran Quang Trung, Changjin Wan, Huiliang Wang, Joseph Wang, Ming Wang, Sihong Wang, Ting Wang, Zhong Lin Wang, Paul S. Weiss, Hanqi Wen, Sheng Xu, Tailin Xu, Hongping Yan, Xuzhou Yan, Hui Yang, Le Yang, Shuaijian Yang, Lan Yin, Cunjiang Yu, Guihua Yu, Jing Yu, Shu-Hong Yu, Xinge Yu, Evgeny Zamburg, Haixia Zhang, Xiangyu Zhang, Xiaosheng Zhang, Xueji Zhang, Yihui Zhang, Yu Zhang, Siyuan Zhao, Xuanhe Zhao, Yuanjin Zheng, Yu-Qing Zheng, Zijian Zheng, Tao Zhou, Bowen Zhu, Ming Zhu, Rong Zhu, Yangzhi Zhu, Yong Zhu, Guijin Zou, and Xiaodong Chen *
Yifei Luo, Mohammad Reza Abidian, Jong-Hyun Ahn, Deji Akinwande, Anne M. Andrews, Markus Antonietti, Zhenan Bao, Magnus Berggren, Christopher A. Berkey, Christopher John Bettinger, Jun Chen, Peng Chen, Wenlong Cheng, Xu Cheng, Seon-Jin Choi, Alex Chortos, Canan Dagdeviren, Reinhold H. Dauskardt, Chong-an Di, Michael D. Dickey, Xiangfeng Duan, Antonio Facchetti, Zhiyong Fan, Yin Fang, Jianyou Feng, Xue Feng, Huajian Gao, Wei Gao, Xiwen Gong, Chuan Fei Guo, Xiaojun Guo, Martin C. Hartel, Zihan He, John S. Ho, Youfan Hu, Qiyao Huang, Yu Huang, Fengwei Huo, Muhammad M. Hussain, Ali Javey, Unyong Jeong, Chen Jiang, Xingyu Jiang, Jiheong Kang, Daniil Karnaushenko, Ali Khademhosseini, Dae-Hyeong Kim, Il-Doo Kim, Dmitry Kireev, Lingxuan Kong, Chengkuo Lee, Nae-Eung Lee, Pooi See Lee, Tae-Woo Lee, Fengyu Li, Jinxing Li, Cuiyuan Liang, Chwee Teck Lim, Yuanjing Lin, Darren J. Lipomi, Jia Liu, Kai Liu, Nan Liu, Ren Liu, Yuxin Liu, Yuxuan Liu, Zhiyuan Liu, Zhuangjian Liu, Xian Jun Loh, Nanshu Lu, Zhisheng Lv, Shlomo Magdassi, George G. Malliaras, Naoji Matsuhisa, Arokia Nathan, Simiao Niu, Jieming Pan, Changhyun Pang, Qibing Pei, Huisheng Peng, Dianpeng Qi, Huaying Ren, John A. Rogers, Aaron Rowe, Oliver G. Schmidt, Tsuyoshi Sekitani, Dae-Gyo Seo, Guozhen Shen, Xing Sheng, Qiongfeng Shi, Takao Someya, Yanlin Song, Eleni Stavrinidou, Meng Su, Xuemei Sun, Kuniharu Takei, Xiao-Ming Tao, Benjamin C. K. Tee, Aaron Voon-Yew Thean, Tran Quang Trung, Changjin Wan, Huiliang Wang, Joseph Wang, Ming Wang, Sihong Wang, Ting Wang, Zhong Lin Wang, Paul S. Weiss, Hanqi Wen, Sheng Xu, Tailin Xu, Hongping Yan, Xuzhou Yan, Hui Yang, Le Yang, Shuaijian Yang, Lan Yin, Cunjiang Yu, Guihua Yu, Jing Yu, Shu-Hong Yu, Xinge Yu, Evgeny Zamburg, Haixia Zhang, Xiangyu Zhang, Xiaosheng Zhang, Xueji Zhang, Yihui Zhang, Yu Zhang, Siyuan Zhao, Xuanhe Zhao, Yuanjin Zheng, Yu-Qing Zheng, Zijian Zheng, Tao Zhou, Bowen Zhu, Ming Zhu, Rong Zhu, Yangzhi Zhu, Yong Zhu, Guijin Zou, and Xiaodong Chen *
上海理工大学机电工程学院,上海 200093 通讯作者,电子邮箱:fkg11@163.com 摘要 随着主轴转速的提高,发热成为高速电主轴面临的关键问题。为了获得电主轴的实际热行为,本文开发了热特性数字孪生系统。热特性数字孪生的原理是通过数据采集系统和修正模型映射和修正热边界条件来模拟机床的热行为。所提出的数字孪生系统包括数字孪生软件、数据采集系统和嵌入传感器的物理模型三个模块。数字孪生软件基于Qt使用C++编程语言和ANSYS二次开发开发。提出热边界修正模型,利用数据采集系统测得的热关键点温度来修正发热和接触热阻。为了验证数字孪生系统的预测精度,在电主轴上进行了试验。实验结果表明,数字孪生系统的预测精度大于95%,对提高热特性仿真和热优化的精度具有重要意义。
总联合主席 Suman Banerjee,威斯康星大学,麦迪逊,美国 Debabrata Das,印度理工学院,班加罗尔,印度 Giovanni Pau,博洛尼亚大学,意大利 技术项目联合主席 Serene Banerjee,爱立信研究中心,班加罗尔,印度 Somali Chaterji,普渡大学,美国 Tadashi Okoshi,庆应义塾大学,日本 海报联合主席 Dheryta Jaisinghani,北爱荷华大学,美国 Shantanu Pal,迪肯大学,澳大利亚 Rohit Verma,英特尔实验室,印度 演示和展览联合主席 Kaustubh Dhondge,Glaukes 实验室,美国 Alok Ranjan,博世,印度 Mridula Singh,CISPA 实验室,德国 小组联合主席 Sergey Gorinsky,IMDEA Networks,西班牙 Prasant Misra,TCS 班加罗尔,印度 Marina Thottan,首席研究科学家,AWS,美国 研究生论坛联合主席Pragma Kar,印度 Kalinga 工业技术学院 Tanya Shreedhar 英国爱丁堡大学 出版物联合主席 Amitalok J. Budkuley,印度印度理工学院克勒格布尔 Mainack Mondal,印度印度理工学院克勒格布尔 Mainack Mondal 社交媒体主席 Garvit Chugh,印度印度理工学院焦特布尔 Meenu Dey,印度印度理工学院古瓦哈提 Meenu Dey,印度印度理工学院甘地讷格尔 Kaushik Chowhan 网络联合主席 Debasree Das,印度印度理工学院克勒格普尔 Salma Mandi,印度印度理工学院克勒格普尔 本科生论坛联合主席 Kaushik Chowhan,印度印度理工学院甘地讷格尔 Naman Dharmani,印度印度理工学院甘地讷格尔 Amish Mittal,微软研究院,印度班那加罗尔 研讨会联合主席 Sourav Kanti Addya,印度苏拉斯卡尔 NIT 卡纳塔克邦 Anuradha Ravi,美国马里兰大学巴尔的摩县工程领域的女性联合主席 DN Sujatha,BMSCE,印度班加罗尔 标准驱动研究研讨会联合主席 Pamela Kumar,印度电信 STD 发展协会 Sumit Roy,华盛顿大学,美国西雅图 量子技术 (WQT) 研讨会联合主席 M Girish Chandra,TCS Research,印度 Sourav Chatterjee,TCS Research & Innovation,印度 Nitin Jain,丹麦技术大学,丹麦 Rajiv Krishnakumar,瑞士 QuantumBasel MINDS 研讨会联合主席 Marios Avgeris,卡尔顿大学,加拿大 宣传联合主席 Suining He,康涅狄格大学,美国 PV Krishna,高通公司,印度班加罗尔 Dmitry Levshun,SPC RAS,俄罗斯圣彼得堡 Junji Takemasa,大阪大学,日本 Juheon Yi,诺基亚贝尔实验室,英国剑桥 差旅补助联合主席 Bhuvana Krishnaswamy,威斯康星大学,美国麦迪逊 Tarun Mangla,印度印度理工学院 IT 主席 Raj Sharma,印度沃尔玛全球科技 Harsh Vardhan,印度 IIT 焦特布尔 赞助联合主席 Giridhar Mandyam,美国联发科技 Rajeev Shorey,印度印度理工学院德里 财务联合主席 Chandrika Sridhar,印度班加罗尔 IISc Raj Sharma,印度沃尔玛全球科技 注册联合主席 Chandrika Sridhar,印度班加罗尔 IISc Sushma Srinivasan,IISc 班加罗尔,印度 指导委员会联合主席 Uday Desai,印度理工学院海得拉巴 Giridhar Mandyam,联发科技,美国 Rajeev Shorey,IIT 德里,印度 G. Venkatesh,萨斯肯,印度
成员: • Orazio Aiello,国立大学。新加坡(SG)• Janne Aikio,大学奥卢大学 (FI) • Johan Alme,卑尔根大学 (NO) • Atila Alvandpour,林雪平大学 (SE) • Paul Annus,Taltech (EE) • Snorre Aunet,NTNU (NO) • Marco Balboni,费拉拉大学 (IT) • Abdullah Baz,Umm Al-Qura 大学 (SA) • Elmars Bekecal,里士满技术大学,里士满大学 (SE) • 隆德大学 (SE) • Claudio Brunelli,诺基亚 (FI) • Luigi Carro,UFRGS (BR) • Mario Casu,都灵理工大学 (IT) • Kun-Chih (Jimmy) Chen,国立中山大学 (TW) • Yong Chen (Nick),清华大学。 (中国) • Hans Jakob Damsgaard,诺基亚(FI) • Patricia Derler,国家仪器(美国) • Peeter Ellervee,Taltech(EE) • Diana Goehringer,德累斯顿工业大学(德国) • Gunnar Gudnason,奥迪康(丹麦) • Xinfei Guo,Mellanox TechnSEologies(美国) • Half-Houston University(美国),阿尔托大学(FI) • Shadi Harb,英特尔,(美国) • Thomas Hollstein,Taltech(EE) • Heikki Hurskainen,诺基亚(FI) • Waqar Hussain,Nordic Semiconductors(NO) • Maksim Jenihhin,Taltech(EE) • Gert Jervan,Taltech(EE) • Ted Johan SE,Gulson University(CA)nar Kjeldsberg,NTNU(NO) • Kristian Gjertsen Kjelgård,Univ.奥斯陆(挪威) • Peter Koch,奥尔堡大学(丹麦) • Selcuk Köse,大学罗切斯特 (美国) • Marko Kosunen,阿尔托大学 (FI) • Olli-Erkki Kursu,大学。奥卢 (FI) • Kimmo Kuusilinna,Nosteco (FI) • Vesa Lahtinen,诺基亚 (FI) • Yannick Le Moullec,Taltech (EE) • Pasi Liljeberg,图尔库大学 (FI) • Liang Liu,隆德大学 (SE) • Farshad Moradi,奥胡斯大学 (DK) • Ilkka Nissinen,大学。奥卢 (FI) • Sajjad Nouri (DE) • Jari Nurmi,特拉维夫大学 (FI) • Vojin G. Oklobdzija,加州大学戴维斯分校 (美国) • Milica Orlandić,挪威科技大学 (NO) • Dmitry Osipov,ITEM (DE) • Vassilis Paliouras,大学。帕特雷 (GR) • Darshika G. Perera,UCCS(美国) • Ernesto Pérez,CSEM(瑞士) • Luca Pezzarossa,DTU(丹麦) • Sebastian Pillement,Univ.南特大学 (FR) • Juha Plosila,图尔库大学 (FI) • Timo Rahkonen,奥卢大学 (FI) • Toomas Rang,Taltech (EE) • Jussi Ryynänen,阿尔托大学 (FI) • Ketil Røed,大学。奥斯陆(挪威) • Juha Röning,大学奥卢大学(FI) • Alireza Saberkari,林雪平大学(SE) • Martin Schoeberl,丹麦技术大学(DK) • Shahrian Shahabuddin,俄克拉荷马州立大学(美国) • Ibraheem Shayea,伊斯坦布尔技术大学。 (TR) • Ming Shen,奥尔堡大学(DK) • Olli Silvén,奥卢大学(FI) • Henrik Sjöland,隆德大学(SE) • Kalle Tammemäe,Taltech(EE) • Jing Tian,南京大学(CN) • Kjetil Ullaland,卑尔根大学(NO) • Vishnu Unnikrishnan,坦佩雷大学。 (FI) • Boris Vaisband,麦吉尔大学(CA) • Lan-Da Van,国立交通大学(TW) • 马克·维斯特巴卡 (Mark Vesterbacka),林雪平大学(SE) • Seppo Virtanen,图尔库大学 (FI) • Upasna Vishnoi,Marvell Semiconductor (美国) • Roshan Weerasekera,西英格兰大学 (英国) • Avinash Yadav,Nvidia (美国) • Trond Ytterdal,挪威科技大学 (NO) • Milad Zamani,奥胡斯大学 (DK),• Yuteng ZhouWPI(美国)• Viktor Åberg,隆德大学(瑞典)• Johnny Öberg,KTH(瑞典)