执行摘要 多森市委员会目前正处于去年 2 月制定的 2022-24 年战略承诺的一半位置。多森市战略规划更新研讨会(2/2/24 和 2/3/24)旨在通过延续我们的时代对话来巩固这些承诺。2024 年研讨会议程为委员会提供了重要信息和对话机会,以继续多森目前的高水平服务,同时最大限度地发挥新的变革举措的影响。第一天主要包括针对委员会确定的感兴趣领域的演示。第二天促进了民选领导人的讨论,以分享意见,考虑项目和资金选择,确定影响并为员工提供指导。
量子点(QD)在液晶(LC)培养基中的分散可以有效地修改其介电和电光特性,这些特性在基于LC的显示以及非放置应用程序中很有用。在这里,我们报道了钙钛矿量子点(PQD)掺杂对列液晶(NLC)材料的介电性能的影响,即Zli-1565在其整个列和各向同性相。纯NLC的介电参数及其具有PQD的复合材料(0.1 wt。%,0.25 wt。%和0.5 wt。%)。与纯NLC相比,由于移动离子密度的增长,复合材料的介电介电常数(ɛʹ)和介电损耗(ɛʺ)的值增加。纯NLC的损耗因子(tanδ)的光谱峰随着PQD的添加向高频区域移动。此外,还评估了纯NLC和0.25 wt。%PQDS-NLC复合材料的温度依赖性介电参数(即最佳浓度)。此外,还评估了纯样品和0.25 wt。%复合材料的介电性各向异性和阈值电压。与纯净NLC相比,这里要注意的一点是,与纯NLC相比,清除温度(T n-I)的复合材料的清除温度(T N-I)减少了4°C。在这种PQDS-NLC复合材料上获得的结果可用于具有可调介电特征的基于NLC的电气设备。
摘要:铅卤化物钙钛矿材料和光学谐振器之间的强耦合使这些新兴半导体的光物理特性既可以控制,又可以观察基本物理现象。然而,实现光学定义明确的激子跃迁的光学质量钙钛矿量子点(PQD)膜的困难阻止了这些材料中强光耦合的研究,这是光电领域的核心。在本文中,我们证明了在金属谐振器中多腔激素极化子的室温下形成,它们嵌入了高度透明的邻苯二颗元素量子点(CSPBBR 3 -QD)固体,这通过对系统的吸收和发射特性的重新配置来揭示。我们的结果表明,在CSPBBR 3 -QD光腔中,似乎不存在或补偿Biexciton相互作用或大型极性形成(通常被调用以解释PQD的特性)的影响。我们观察到,强耦合可以显着降低光发射线宽度,以及光吸收的超快调制,可通过激发通量来控制。我们发现,北极星与深色态储层的相互作用在确定杂交光量子点固体系统的发射动力和瞬时吸收特性方面起着决定性的作用。我们的结果应作为将来对PQD固体作为极化材料进行研究的基础。关键字:量子点固体,钙钛矿,强烈的激子 - 光子耦合,偏振子,光学微腔
摘要:铅卤化物钙钛矿材料和光学谐振器之间的强耦合使这些新兴半导体的光物理特性既可以控制,又可以观察基本物理现象。然而,实现光学定义明确的激子跃迁的光学质量钙钛矿量子点(PQD)膜的困难阻止了这些材料中强光耦合的研究,这是光电领域的核心。在本文中,我们证明了在金属谐振器中多腔激素极化子的室温下形成,它们嵌入了高度透明的邻苯二颗元素量子点(CSPBBR 3 -QD)固体,这通过对系统的吸收和发射特性的重新配置来揭示。我们的结果表明,在CSPBBR 3 -QD光腔中,似乎不存在或补偿Biexciton相互作用或大型极性形成(通常被调用以解释PQD的特性)的影响。我们观察到,强耦合可以显着降低光发射线宽度,以及光吸收的超快调制,可通过激发通量来控制。我们发现,北极星与深色态储层的相互作用在确定杂交光量子点固体系统的发射动力和瞬时吸收特性方面起着决定性的作用。我们的结果应作为将来对PQD固体作为极化材料进行研究的基础。关键字:量子点固体,钙钛矿,强烈的激子 - 光子耦合,偏振子,光学微腔
摘要:机器学习 (ML) 已显示出加速各种材料系统合成规划的潜力。然而,由于缺乏用于开发材料合成 ML 工作流程的系统方法或启发式方法,许多材料科学家仍然无法使用 ML。在这项工作中,我们报告了一种选择 ML 算法来训练预测纳米材料合成结果的模型的方法。具体来说,我们开发并使用了一个自动化批量微反应器平台来收集大量 CdSe 量子点热注射合成结果的实验数据集。此后,该数据集用于训练使用各种 ML 算法预测合成结果的模型。针对不同大小和添加不同噪声量的实验数据集,比较了这些算法的相对性能。基于神经网络的模型显示出对吸收和发射峰的最准确预测,而预测半峰全宽的级联方法被证明优于直接方法。SHapley Additive exPlanations (SHAP) 方法用于确定不同合成参数的相对重要性。我们的分析表明,SHAP 重要性分数高度依赖于特征选择,并强调了开发固有可解释模型以从材料合成的 ML 工作流程中获取见解的重要性。
由于元件尺寸极小且功耗巨大,基于互补金属氧化物半导体 (CMOS) 技术的器件性能有限。确实,许多研究人员正在考虑如何使用低功耗方法在纳米级构建复杂的逻辑电路。为了降低设计密度并实现高速切换,有必要考虑 CMOS 替代品。量子点细胞自动机 (QCA) 是一种新型无晶体管范例,可用于创建具有高密度和太赫兹速度切换的纳米级器件。有许多参考文献 [1-3] 深入探讨了实验特性和物理实现(金属岛、半导体、磁性和分子 QCA)。第一个基于原始材料的功能量子单元刚刚建成 [4]。CMOS 技术的一个问题是它倾向于耗散大量电能。借助可逆计算,可以防止计算过程中的能量损失,这已被提出 [5]。研究证实了这一点。在可逆逻辑中,可逆门起着关键作用。研究界已提出了几种类型的可逆门 [5]。Toffoli 门因其可执行多种任务而得到广泛应用 [6-9]。
医疗保健中的人工智能(AI)和机器人技术的摘要预示了医学创新的新时代,有望增强的诊断,简化过程和改善的患者护理。然而,这场技术革命伴随着需要细致考虑的复杂道德意义。本文在医疗保健中围绕AI和机器人技术的复杂道德地形导航,深入研究特定的维度,并为道德导航提供策略和最佳实践。隐私和数据安全是最重要的问题,需要强大的加密和匿名技术来保护患者数据。负责任的数据处理实践,包括分散数据共享,对于保护患者隐私至关重要。算法偏见提出了一个重大挑战,要求各种数据集和正在进行的监控以确保公平性。AI决策过程中的透明度和解释性增强了信任和问责制。明确的责任框架对于解决制造商,医疗机构和专业人士的责任制至关重要。道德准则,定期更新和所有利益相关者可以访问,并在此动态景观中指导决策。此外,AI和机器人技术的社会含义扩展到可及性,公平和社会信任。必须优先考虑桥接数字鸿沟并确保公平访问的策略。全球合作在制定适应能力的法规并应对责任和知识产权等法律挑战方面至关重要。伦理必须在医疗保健技术不断发展的领域保持最前沿。通过采用这些策略和最佳实践,医疗保健系统和专业人员可以利用AI和机器人技术的潜力,确保负责任和道德的整合,从而使患者受益,同时维护最高的道德标准。
我们的计划建立在Green Dot的学术严谨性,发展领导能力和培养年轻人的基础的基础上。关键杠杆包括确保所有学者的学术严谨,加速学习,扩大黑人学者的资产和需求,并赋予有目的的大学和职业途径。
III-V胶体量子点(CQD)在红外光检测中引起了人们的关注,CQDS合成和表面工程的最新发展提高了性能。在这里,这项工作调查了光电探测器的稳定性,发现从电荷传输层(CTL)到CQDS活性层的锌离子的差异会增加其中的陷阱密度,从而导致操作过程中快速且不可逆转的性能损失。在防止这种情况下,这项工作引入了CQD和ZnO层之间的有机阻塞层。但是这些对设备性能产生了负面影响。然后,该设备可以使用C60:BCP作为顶部电子传输层(ETL),以实现良好的形态和过程兼容性,并选择NiO X作为底部孔传输层(HTL)。基于Nio X的第一轮设备显示出有效的光响应,但由于针孔引起的高泄漏电流和低敞开电路(VOC)。这项工作介绍了Poly [Bis(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)(PTAA),它使用Nio X NC形成杂种HTL,这是一种减少针孔形成,界面陷阱密度,界面陷阱密度和双肌发射重组,增强载体,增强的载体。在1 V施加偏置的970 nm处,光电探测器在970 nm处实现53%的外部量子效率(EQE),并且在连续照明操作的19小时后,它们保持了95%的初始性能的95%。光电电视机在80天的架子存储后保留了80%以上的性能。
III-V 胶体量子点 (CQD) 在红外光电探测中备受关注,CQD 合成和表面工程的最新发展提高了性能。本文研究了光电探测器的稳定性,发现锌离子从电荷传输层 (CTL) 扩散到 CQD 活性层会增加其中的陷阱密度,导致操作过程中性能快速且不可逆地下降。为了防止这种情况发生,本文在 CQD 和 ZnO 层之间引入了有机阻挡层;但这会对设备性能产生负面影响。然后,该设备允许使用 C60:BCP 作为顶部电子传输层 (ETL) 以获得良好的形态和工艺兼容性,并选择 NiO X 作为底部空穴传输层 (HTL)。第一轮基于 NiO X 的设备表现出高效的光响应,但由于针孔而存在高漏电流和低开路电压 (Voc)。本研究将聚[双(4-苯基)(2,4,6-三甲基苯基)胺] (PTAA) 与 NiO X NC 结合形成混合 HTL,这种添加可减少针孔形成、界面陷阱密度和双分子复合,从而增强载流子收集。光电探测器在施加 1 V 偏压时在 970 nm 处实现 53% 的外部量子效率 (EQE),并且在连续照明操作 19 小时后仍保持 95% 的初始性能。光电探测器在货架储存 80 天后仍保持 80% 以上的性能。