该项目包括制定一个剧本,旨在帮助指导交通部和其他交通机构适应和准备 NCHRP 08-127 中引入的颠覆性技术。剧本包括交通部将颠覆性技术纳入其绩效管理框架和组织结构所采取的渐进步骤。开发的流程是模块化的 — 交通部可以选择哪个步骤最符合他们目前参与颠覆性技术的状态 — 并且是周期性的,敦促交通部继续监控颠覆性技术并在颠覆性技术发展和成熟时更新其实践。剧本中的行动、决策工具和示例将帮助交通部为颠覆性技术做好准备、识别和实施颠覆性技术。
QD是准球形零维纳米材料,这意味着它们在所有三个尺寸中都低于100纳米。在用紫外线照亮时,它们将电子激发到更高的能量状态,从而导致能量作为光的波长发射。1,2由于这种独特的行为和小规模,QD对半导体的cant不可感兴趣。3然而,他们的应用很快被扩展到动物中各种器官的成像剂医学用途。4自然,这需要更加专注于生物蛋白质和降低的细胞毒性,排除传统上使用的元素,例如镉,这可能会导致细胞死亡。5然而,Xu等人的机会发现。纯化纳米管会导致CD到医疗的最前沿。6
半导体量子点 (QDs) 是量子信息和量子计量应用的重要光源(见概要:迈向完美的单光子源)。这些纳米级结构还可以解释物理学家无法理解的量子电动力学问题。这类问题包括当 QD 被限制在光子腔中时,QD 激子(由半导体内部的电子和空穴结合而成的准粒子)衰变的相互矛盾的理论预测。现在,现就职于澳大利亚新南威尔士大学的 Alexey Lyasota 和同事为其中一种理论提供了实验支持 [ 1 ]。他们的结果表明,如果不考虑激子光衰变通道之间的干扰,光与物质相互作用的理论描述是不完整的。
量子点 (QDs) 能够产生非经典光态,是实现量子信息技术的非常有希望的候选者。然而,这些技术所要求的高光子收集效率可能无法达到嵌入在高折射率介质中的“独立”半导体 QD。本文介绍了一种新颖的激光写入技术,能够直接制造与电介质微球自对准的 QD(精度为 ± 30 纳米)。当使用 0.7 数值孔径的物镜时,微球的存在可使 QD 发光收集增强 7.3±0.7 倍。该技术利用激光破坏 GaAs 1-xNx:H 中 N-H 键的可能性,获得低带隙材料 GaAs 1-xNx。微球沉积在 GaAs 1 − x N x :H/GaAs 量子阱的顶部,用于产生光子纳米喷射,该光子纳米喷射可精确去除微球下方的氢,从而在距样品表面预定距离处创建 GaAs 1 − x N x QD。二阶自相关测量证实了使用此技术获得的 QD 发射单光子的能力。
摘要:量子点(QD)是固态纳米结构,可以将电子或孔限制在所有三个空间维度中,从而导致能量水平离散。也可以将其定义为一个半导体,其激子都限制在所有三个空间维度中。结果,它们具有散装半导体和离散分子之间的特性。用受限电子的QD可以视为人造原子。半导体量子点已经成为量子计算的强候选物,由于超快光电子,纳米结构的制造和表征技术以及大规模整合的可能性。由于自旋度的自由度较低,因此可以将电子或孔的自旋用于量子位,这为在这些量子位上进行任何门控操作提供了足够的时间。因此,在本文中研究了量子点的形状的影响。
量子点是零维纳米材料,尺寸范围为 1 至 20 纳米,与激子的玻尔半径相当,并产生三维量子限制效应。限制电子在三维空间中的运动使量子点的电子结构与原子相似,这就是为什么一些专家称量子点为“人造原子” [1, 2]。量子点因其独特的电、光、电化学和物理化学特性而成为细胞生物成像中的造影剂和用于治疗目的的纳米载体 [2-4]。检测纳米载体进入细胞及其与细胞过程的相互作用是药物发现和开发新型药物输送系统的关键点 [2]。量子点的荧光特性使追踪纳米载体和分子机制成为可能,以便通过药物或基因治疗进行诊断和治疗应用[5]。量子点
碳点(CDS)是一类低成本碳纳米材料的通用名称,最初在2004年报告,1个具有平均粒径低于10 nm的光致发光(PL)特性。2,由于其易于且廉价的合成,低毒性,6个高(水性)溶解度,光电特性,可轻松的修饰和稳定性,这种碳质材料对从生物成像到传感器,光电子的许多应用都具有吸引力,其含量为3-6。7当前生产CD的合成方法包括自上而下和自下而上的方法,这些方法通常提供各种大小的聚集石墨烯样层和较大的结构多样性,包括SP 2 / SP 3碳网络和以不同比率的氧气富官能组。结果,根据合成,CD的光致发光特性在量子产率上大大变化,从<1%到95%。在过去的十年中,已经报道了光激发波长依赖性和独立发射。8–11 CD的实验和理论研究表明,光致发光主要源于涉及SP 2碳的杂交轨道的π-π*过渡。
纳米结构中的时间依赖性现象对理解和控制其动态行为的兴趣越来越大。应用程序之一是量子计算,其中可以通过以可编程方式操纵粒子(Qubits)来以平行方式进行某种信息处理[1,2]。在某些物理系统中已成功证明了各种量子算法[3],并且在整合实用量子计算机所需的大量Qubits方面已经取得了进展,尤其是在SolidStatesystateSystateSystems中[4-9]。尽管跨性量表computermayrequire的巨大研究活动,但量子信息研究已经成功,因为提供了一种通用语言来与跨学科研究人员进行交流。量子型cannowbediscussedintermsofquantuminenformination Theory,它促进了物理学家,化学家,数学家和量子工程师之间的讨论。通常,任何将初始状态(密度算子)更改为最终状态的量子过程都可以通过完全阳性的痕量保护映射来描述[1]。对映射的知识用于定义量子信息过程。相同的映射提供了无脑摄取的iNteractractions。Quantumcomputation isbasedonanassemblyofunitaryoperations, whichcanbedecomposedintosomefundamental unitary operations on one- or two- qubit subsystems.因此,问题可以简化为几种单一操作员。实际上,现实的操作受到与量子系统耦合的环境的影响和降级,因此映射成为一个非整体量子过程[10]。降低系统相干性的两个重要量子过程是耗散的,其中量子系统的能量与环境交换,并进行dephasing,其中量子系统的相位由环境随机化。前者通常以纵向松弛时间(T 1)为特征,而后者则以横向松弛时间(T 2)为特征。此外,在与测量设备耦合下,测量过程也可以视为量子过程。量子计算需要一组完整的量子过程,以初始化所有量子位,执行一个和双Quit的单一操作,测量每个量子状态并避免出现非单一操作的错误[11]。纳米规模的固态设备中的量子动力学对于控制具有可编程量子过程序列的定制结构中的某些单个量子具有吸引力。具有约瑟夫森连接的超导电路成功证明了一个和两Q量的操作,具有高度的相干性[12,13]。可以通过设计设备参数和适当的脉冲序列来很好地与环境隔离。另一个系统是半导体量子点(QD),它提供可以用外部电压控制的人工电子状态。由于可以在半导体装置中设计和实际形成原子样电子状态,因此QD通常称为人工原子[14-17]。电子状态的高可控性可用于研究人工量子系统的动态行为以及量子计算系统的动态行为。有两个主要选择量子基础:单个QD中的自由度自由度和双量子点(DQD)中的电荷(轨道)自由度。在本文中,我们将回顾一些有关QD中的旋转和充电量子的研究,这些研究与量子信息处理和实际设备背后的物理现象有关。
量子点(QD)正在下一代太阳能电池中探索,因为与传统的太阳能相比,它们可以吸收较宽的光长[1]。在展示技术中用于改善LCD屏幕的颜色和性能,它们会产生更明亮,更节能的屏幕,并启用量子计算作为可能的Qubits,即量子信息处理的基本单元[2,3]。功能化的QD可用于药物输送系统中,以将治疗剂传递到体内的特定靶标。QD也用于各种化学和生物传感器,因为它们对环境变化敏感[4]。它们还充当生物学和医学成像中的荧光标签[5,6]。它们的亮度,光稳定性和可调发射使它们非常适合监测和成像生物分子,细胞和组织。尽管有所有这些优点,但一些QD,尤其是那些含有重金属(例如镉)的QD会引起毒性问题[7]。基于镉的QD先前被认为对细胞有毒。CDTE QD增加了小鼠肝细胞和增强的反应性
全球至少有22亿人患有VI损害或失明[1]。盲人和视力障碍的人的数量仍在增加。盲文是盲人使用的通用触觉写作系统,其中三维,基于DOT的脚本允许阅读字符无光或视觉。与Clas Sical写作不同,单个字母字符是凸角,可以通过触摸指尖来阅读。Louis Braille(1809–1852)发明了带有他名字的写作系统,即盲文或盲文写作系统[2]。 可以通过用手指触摸[3]来“读取”此系统。 在盲文中,标志COM张贴了多达六个点,分为两列和三行,与适当的字母或其他字符相对应[4]。 通过在各个位置组合一个或多个点,可以设计64个组合,创建字母,数字,标点符号,Louis Braille(1809–1852)发明了带有他名字的写作系统,即盲文或盲文写作系统[2]。可以通过用手指触摸[3]来“读取”此系统。在盲文中,标志COM张贴了多达六个点,分为两列和三行,与适当的字母或其他字符相对应[4]。通过在各个位置组合一个或多个点,可以设计64个组合,创建字母,数字,标点符号,