人工智能驱动的模拟器的兴起:构建新的水晶球 计算社区联盟 (CCC) 四年期论文 Ian Foster(芝加哥大学)、David Parkes(哈佛大学)和 Stephan Zheng(Salesforce AI Research) 五十年前,天气预报员努力预测明天的天气是否与今天相同。如今,天气预报通常可以准确预测未来一周或更长时间,让个人和社会能够为不再不可预见的事情做好准备。这种显著的转变在很大程度上归功于计算机,尤其是计算模拟的兴起,这是一种使用计算机预测复杂系统未来状态的方法。模拟最初是在第二次世界大战的最后几天为军事目的而开发的,现在已遍布人类社会和经济领域,为决策者提供了一个非凡的水晶球,不仅可以预测下周的天气,还可以预测飞机在不同天气模式下飞行时的表现、新药对新疾病的有效性以及未来电池中新材料的行为。计算机模拟是在计算机上执行的数学建模过程,旨在预测现实世界或物理系统的行为或结果。 1 模拟通常通过将空间(例如北美)划分为多个小单元来配置,每个小单元保存一组值(例如温度和压力)以及一组本地规则,用于更新下一个时间步骤的单元(例如,基于单元和相邻单元的当前温度和压力,一分钟后的温度/压力)。模拟运行以测量的输入(温度/压力)为种子,并反复应用其规则来随时间更新模拟系统。更准确的输入数据、更小的单元和更好的规则可以实现更高保真度的模拟(例如,下周而不是明天的良好天气预报)。计算机模拟的使用现在在社会上如此普遍,毫不夸张地说,美国和国际的持续繁荣、安全和健康在一定程度上取决于模拟能力的持续改进。如果我们能够预测两周后的天气,指导新病毒性疾病新药的设计,或者管理将生产成本和时间降低一个数量级的新制造工艺,情况会怎样?如果我们能够预测人类的集体行为,例如,在自然灾害期间对疏散请求的响应,或劳动力对财政刺激的反应,情况会怎样? (另请参阅 CCC Quad 关于疫情信息学的配套论文,其中讨论了
7月 *的Irina *,‡,,赫尔曼(Herman),丹尼尔·卡森伯(DanielKasenber§ Wei-Jen KO 3,Andrera Huber 1,Bretht Wastshire 1,Gall Elidan,Rabin 2,Roni Robinin 2,Robiviit Engelberg 2,Lydan Hackmon 2,Ravil 2,Rachel棕色1,绿色Chiir§,1,Grand Studina Grand We-Xin Dog 3,Marchal 1,Racsite Van Deman 4,儿童区,Abbhipolo 3,Striopolous 3,Annihe Hale 5,Wais Matatas 2,Ben Gomes 3特征1
越来越多的公共数据集显示出对自动器官细分和图检测的显着影响。但是,由于每个数据集的大小和部分标记的问题,以及对各种肿瘤的有限侵入,因此所得的模型通常仅限于细分特定的器官/肿瘤,以及ig- ignore ignore ignore的解剖结构的语义,也可以将其扩展到新颖的Domains。为了解决这些问题,我们提出了剪辑驱动的通用模型,该模型结合了从对比的语言图像预训练(剪辑)到细分模型中学到的文本嵌入。这个基于夹子的标签编码捕获了解剖学关系,使模型能够学习结构化特征嵌入和段25个器官和6种类型的肿瘤。提出的模型是从14个数据集的组装中开发的,使用总共3,410张CT扫描进行培训,然后对3个附加数据集进行了6,162个外部CT扫描进行评估。我们首先在医疗细分十项全能(MSD)公共排行榜上排名第一,并在颅库(BTCV)之外实现最先进的结果。此外,与数据集特异性模型相比,大学模型在计算上更有效(更快6英制),从不同站点进行CT扫描更好,并且在新任务上表现出更强的传输学习绩效。
糖基化在包括糖尿病在内的蛋白质功能和疾病进展中起着至关重要的作用。这项研究进行了全面的糖蛋白分析,比较了健康的志愿者(HV)和DM样品,并鉴定出19,374肽和2,113种蛋白质,其中11104种是糖基化的。总共将287种不同的聚糖映射到3,722个糖基化的肽,揭示了HV和DM样品之间糖基化模式的显着差异。统计分析确定了29个显着改变糖基化位点,在DM中上调了23个,在DM中下调了6个。值得注意的是,在DM中,在Prosaposin的位置215处的Glycan HexNAC(2)Hex(2)FUC(1)在DM中显着上调,标志着其首次报道的与糖尿病的关联。机器学习模型,尤其是支持向量机(SVM)和广义线性模型(GLM),在基于糖基化特征(Glycans,糖基化蛋白质和糖基化位点)区分HV和DM样品时,可以在区分HV和DM样品时获得高分类精度(〜92%:96%)。这些发现表明,改变的糖基化模式可能是糖尿病相关病理生理和治疗靶向的潜在生物标志物。
(c) 在使用人工智能工具进行任何与工作相关的用途之前,无论其位置如何,只要该用途不在列表中,未获得其部门和工作分类的特别批准,或未获得人工智能用户希望使用人工智能工具执行的任务的批准,人工智能用户必须获得 [主管/经理/人力资源指定人员] 的明确书面同意。提出请求的人工智能用户应准备好讨论使用相关人工智能工具完成工作相关任务的目的、范围和业务理由。
借助 AI,您可以模拟不同的换货或流失率,并查看对收入的影响。下面是为客户演示准备的真实 AI 商品组合模拟。他们想知道商店商品组合变化(即添加新商品与删除旧的低效 SKU)的盈亏平衡点。
摘要 自我调节学习 (SRL) 是一种认知能力,在促进学生有效制定策略、监控和评估自己的学习行为方面具有明显意义。研究表明,缺乏自我调节学习技能会对学生的学业成绩产生负面影响。有效的数据驱动反馈和行动建议被认为对 SRL 至关重要,并显著影响学生的学习和表现。然而,向每个学生提供个性化反馈的任务对教师来说是一个重大挑战。此外,由于大多数课程的学生人数众多,为个性化建议确定适当的学习活动和资源的任务对教师来说也是一个重大挑战。为了应对这些挑战,一些研究已经探讨了基于学习分析的仪表板如何支持学生的自我调节。这些仪表板提供了一些关于学生成功和失败的可视化(作为反馈)。然而,虽然这种反馈可能有益,但它并没有提供有见地的信息或可行的建议来帮助学生提高学业水平。可解释的人工智能 (xAI) 方法已被提出来解释此类反馈并从预测模型中产生见解,重点关注学生在正在进行的课程中需要采取的相关行动以改进。此类智能活动可以作为数据驱动的行为改变建议提供给学生。本论文提供了一种基于 xAI 的方法,可以预测课程表现并计算信息反馈和可操作的建议,以促进学生的自我调节。与以前的研究不同,本论文将预测方法与 xAI 方法相结合,以分析和操纵学生的学习轨迹。目的是通过为该方法提供的预测提供深入的见解和解释,为学生提供详细的、数据驱动的可操作反馈。与单独的预测相比,该技术为学生提供了更实用和有用的知识。所提出的方法以仪表板的形式实施,以支持大学课程中学生的自我调节,并对其进行了评估以确定其对学生学业成绩的影响。结果表明,仪表板显着提高了学生的学习成绩并提高了他们的自我调节学习技能。此外,研究发现,所提出的方法提出的建议对学生的表现产生了积极影响,并帮助他们进行自我调节。
教育平台越来越多地由人工智能驱动。除了提供广泛的课程过滤选项外,个性化的学习材料和教师推荐也在推动当今的研究。虽然准确性在评估这些推荐中起着重要作用,但必须考虑许多因素,包括学习者的保留率、吞吐量、技能提升能力、学习机会的公平性和满意度。这在以学习者为中心和以平台为中心的方法之间造成了紧张关系。我将描述数据驱动推荐和教育理论交叉领域的研究。这包括利用同伴学习中的协作和亲和力的多目标算法、研究学习策略对平台和人员的影响以及自动生成课程序列。本文最后讨论了数据管理系统在实现现代在线教育方面可以发挥的核心作用。