摘要:单分子测量值提供了对分子过程的详细机械见解,例如在基因组调节中,DNA访问受核小体和染色质机械控制。然而,作用于定义的染色质底物上的核因子的实时单分子观察对于定量和可重复性执行具有挑战性。在这里,我们提出XSCAN(染色质关联的多路复用单分子检测),一种通过同时对核小体库的成像并行化单分子实验的方法,其中每种核小体类型在其核体DNA中携带一个可识别的DNA序列。并行实验。我们使用这种方法来揭示Cas9核酸酶在入侵染色质DNA作为PAM位置的函数时如何克服核小体屏障。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于8月29日,2024年。 https://doi.org/10.1101/2024.03.12.584577 doi:Biorxiv Preprint
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年8月26日发布。 https://doi.org/10.1101/2024.03.12.584577 doi:Biorxiv Preprint
摘要细胞免疫与肿瘤细胞之间的动态相互作用对于癌症的进展和对治疗的反应至关重要。此更新,全面的综述研究了这些组件之间的复杂关系,重点是先天和获得的免疫中不同子集的不同子集的功能。使用关键字(例如细胞因子,肿瘤细胞,免疫细胞和癌症)进行了文献搜索,以鉴定参与肿瘤细胞诱导的细胞因子。审查了2003年至2024年之间发表的相关文章,并总结了它们的数据。评论突出了免疫细胞亚群在协调肿瘤免疫反应中的不同作用。与肿瘤相关的巨噬细胞(TAM)和髓样衍生的抑制细胞(MDSC)通常通过抑制效应细胞来刺激癌症的生长和免疫系统的逃避。嗜酸性粒细胞和天然杀伤(NK)细胞有助于肿瘤监测和细胞毒性,而树突状细胞(DCS)在T细胞激活和抗原表现中重现了至上的功能。补体系统和中性粒细胞有助于免疫调节和肿瘤相关的炎症。T淋巴细胞,尤其是抗原呈递细胞(APC)和细胞毒性CD8+ T细胞对于获得的免疫力和抗肿瘤免疫反应至关重要。本评论强调了细胞因子如何与肿瘤细胞相互作用及其在癌症生物学中的作用,为鉴定改善的预后和诊断因素铺平了道路。编译的发现讨论了有价值的细胞因子,以更有效地诊断肿瘤和准确的预后预测。
摘要细胞免疫与肿瘤细胞之间的动态相互作用对于癌症的进展和对治疗的反应至关重要。此更新,全面的综述研究了这些组件之间的复杂关系,重点是先天和获得的免疫中不同子集的不同子集的功能。使用关键字(例如细胞因子,肿瘤细胞,免疫细胞和癌症)进行了文献搜索,以鉴定参与肿瘤细胞诱导的细胞因子。审查了2003年至2024年之间发表的相关文章,并总结了它们的数据。评论突出了免疫细胞亚群在协调肿瘤免疫反应中的不同作用。与肿瘤相关的巨噬细胞(TAM)和髓样衍生的抑制细胞(MDSC)通常通过抑制效应细胞来刺激癌症的生长和免疫系统的逃避。嗜酸性粒细胞和天然杀伤(NK)细胞有助于肿瘤监测和细胞毒性,而树突状细胞(DCS)在T细胞激活和抗原表现中重现了至上的功能。补体系统和中性粒细胞有助于免疫调节和肿瘤相关的炎症。T淋巴细胞,尤其是抗原呈递细胞(APC)和细胞毒性CD8+ T细胞对于获得的免疫力和抗肿瘤免疫反应至关重要。本评论强调了细胞因子如何与肿瘤细胞相互作用及其在癌症生物学中的作用,为鉴定改善的预后和诊断因素铺平了道路。编译的发现讨论了有价值的细胞因子,以更有效地诊断肿瘤和准确的预后预测。
摘要深度学习(DL)模型的快速发展伴随着各种安全和安全挑战,例如对抗性攻击和后门攻击。通过分析当前有关DL攻击和防御的文献,我们发现攻击和防御之间的持续适应使得无法完全解决这些问题。在本文中,我们建议这种情况是由DL模型固有的AWS引起的,即非泄露性,不识别性和非身份能力。我们将这些问题称为内源性安全和保障(ESS)问题。为了减轻DL中的ESS问题,我们建议使用动态异质冗余(DHR)体系结构。我们认为,引入多样性对于解决ESS问题至关重要。为了验证这种方法的效果,我们跨DL的多个应用领域进行了各种案例研究。我们的实验结果证实,基于DHR体系结构构建DL系统比现有的DL防御策略更有效。
超材料是人为设计的材料,旨在具有天然材料中未发现的电磁场的性质。各向异性超材料的电磁特性取决于方向,这为它们提供了控制传统材料无法控制波动的能力。这些属性就像在大规模影响波传播的超材料元件之间的复杂相互作用,例如分散,衰减和波浪的极化[6]。各向异性超材料由定向电导率,渗透率和介电量张量定义。与典型的各向同性材料不同,这些参数不是不变的;相反,它们是方向依赖性的,因此导致材料内部的波浪行为复杂。上述特征可以由张量表示,张量概述了多维材料波相互作用[7]。
许多研究表明,疫苗不是完全有效的,这意味着接种疫苗的人群都包括疫苗免疫的人,尽管接受了疫苗接种疫苗,但疫苗的疫苗也没有。这可能是可能的,因为某些接种疫苗的人可能会错误地认为自己受到了完全保护并且无法获得该疾病。这种看法会显着影响行为,导致一些接种疫苗的人在遵循预防或缓解措施方面的勤奋程度较小。是由上述动机的,我们研究了不产生免疫力的接种疫苗人员的行为变化如何影响直接传播疾病的动力学以及关键指标,例如基本的生殖数和疫苗有效性。我们提出了一个模型,该模型考虑了具有三个失败方面的疫苗:“取”,“学位”和“持续时间”。此外,非免疫接种个体的行为变化是通过一个参数建模的,该参数基于遵守缓解措施来调整其接触率。我们的结果使我们能够可视化行为变化在影响疾病传播动态的各种因素中的作用。首先,我们证明了在不完全有效疫苗的模型中存在的向后分叉存在。第二,我们定义了行为指数阈值,该阈值是确定疾病是否由于行为效应而持续存在的关键指标。最后,我们的结果强调了行为指数和感染的初始值
乌干达坎帕拉国际大学的学生摘要零信任体系结构中网络威胁的日益复杂性和动态性质,需要采取更适应性的方法来实现差异隐私机制。当前的静态隐私解决方案无法充分解决不断发展的威胁景观,从而导致潜在的脆弱性和降低系统效率。本研究提出了一个新颖的自适应差异隐私框架,该框架基于零信任环境中的实时威胁评估,动态调整隐私参数。我们的解决方案介绍了一种智能隐私预算优化算法,该算法不断评估威胁水平并自动重新校准隐私机制,以保持最佳保护,同时最大程度地减少性能开销。通过使用现实世界数据集和模拟攻击方案进行广泛的实验评估,我们证明,与静态机制相比,我们的自适应方法在隐私保存方面提高了47%,同时将系统性能保持在可接受的阈值之内。该框架成功地检测并响应了毫秒内新兴威胁的94%,并动态调整隐私参数以应对确定的风险。我们的结果表明,提议的解决方案有效地平衡了零信托体系结构中隐私保护,系统性能和威胁响应能力。此外,我们还提供了全面的实施指南,并确定了在生产环境中部署自适应差异隐私机制的关键挑战。简介1.1。这项研究通过引入一种实用,可扩展的解决方案来管理动态威胁景观中的差异隐私,从而有助于保护隐私系统。关键字:自适应差异隐私,零信任体系结构,动态威胁响应,隐私预算优化,安全自动化,隐私保护系统1。问题陈述现代网络安全环境由于威胁景观的复杂性迅速发展而面临前所未有的挑战。传统网络平均每天遇到2,200个网络攻击,攻击模式和不断发展的威胁向量的复杂性越来越高(Chen等,2021)。先进的持久威胁(APT)和零日漏洞的兴起显着使隐私保护格局复杂化,需要更复杂的防御机制。静态隐私机制虽然历史上有效,但现在显示出对动态威胁的反应能力的重大局限性,尤其是在零信任环境中。这些机制保持固定的隐私参数,无论威胁严重程度如何
永久性。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过同行评审认证)Preprint