发布者保留随时拒绝或取消任何广告的权利。广告在出版商的判断中试图创造出一种编辑问题的幻想,应将“广告”一词放在顶部。Advertiser and its advertising agency, jointly and severally, agree to indemnify, defend, and save harmless the Publisher, its employees and agents from any claims, actions, expenses, or losses, based on or arising out of anything contained in such advertising, including the unauthorized use of any person's name or photograph or of any sketch, map, words, labels, trademarks, or copyrighted material, obscene language, libelous statements,与根据此费用卡的条款购买的广告有关的隐私或任何非法的侵犯。
摘要:日本国家信息通信技术研究所 (NICT) 目前正在为立方体卫星开发高性能激光通信终端,旨在为需要从轨道传输大量数据的低地球轨道卫星提供高数据速率通信解决方案。通信系统的一个关键部分是高功率光放大器,它能够为传输的信号提供足够的增益,以便能够在对立方体卫星平台的能量和功率影响最小的情况下关闭其对应接收器上的链路。本文介绍了与立方体卫星外形尺寸兼容的小型化 2-W 空间级 2 级掺铒光纤放大器 (EDFA) 的开发,据作者所知,它显示了空间合格 EDFA 的最佳功率与尺寸比。介绍了在实际条件下以及完整的空间鉴定和测试下的性能结果,证明该模块可以支持短时间低地球轨道地面下行链路以及长时间卫星间链路。
32 PONS系列WDM EDFA组合仪,高功率ERBIUM掺杂纤维放大器,它是光学发射器系统中一个网中三个净的核心设备,输入8端口PON+1 PORTS CATV和输出8端口合并结合1550/1490/1310nm。组合的光输出功率:15dBm。插件双电源,实现了OLT和CATV 1550NM光学单一组合和放大的功能,具有高成本性能值。(Erbium掺杂纤维放大器)是光学放大器中的代表性。由于EDFA的波长为1550nm,因此与低损坏的纤维带一致,其技术相对成熟,因此广泛使用。Erbium-doped fiber is the core components of the EDFA, it makes quartz optical fiber as matrix material, and incorporate a certain proportion of rare earth element erbium ions(Er3 +)in the core of a fiber.When certain amount of pump light is injected into the erbium-doped fiber, Er3 + have been excited from the low-energy level to the high energy level, due to Er3 + has a very short高能水平上的寿命,并以非辐射式的形式不久以更高的水平过渡,并形成了该能级和低能水平之间的种群反转分布。由于这两个能级之间的能量完全等于1550nm的光子能量,因此只能发生1550nm光的刺激发射,我们只能扩大1550nm的光学信号。
结论是,由于长度较短,集中式 C 波段 EDFA(由数十米高掺杂光纤组成)内的非线性目前并不是重要的测量问题。设计用于较长波长 L 波段的新型集中式放大器由较长的掺杂光纤样本(通常为 100-200 米)组成。这些光纤中的非线性比 C 波段放大器中的非线性更为显著。然而,与传输光纤中的非线性相比,相关性仍有争议,并且不值得在当前光子学计划下进行实验研究。分布式 EDF As 已被提出,其相互作用长度将比集中式 EDFA 大几个数量级。这些光纤中最可能的非线性效应是由于 1480 nm 附近的强泵浦波导致的信号拉曼放大。然而,这种轻掺杂光纤的拉曼增益谱与传统硅光纤非常相似,后者的表征技术已经建立。
光学放大设备是光学通信系统中的关键组件。在1980年代,Erbium掺杂的纤维放大器(EDFAS)是一项开创性的成就,可以实现长途光学通信和革命性的信息传输[1,2],因为EDFA一直为全球基于纤维的通信网络提供了低噪声的高收益,数十年来。erbium离子在覆盖高输出功率的电信带中表现出稳定和低噪声增益,使Erbium掺杂介质非常适合光学放大器和激光器。但是,EDFA通常需要一米至数十米的光纤长度,这使它们容易体现环境波动,并为整合工作带来挑战。半导体光放大器(SOA)具有高增益和集成,但它们具有极化敏感[3],噪声图也相对较高。对比,与不同光子平台的稀土离子掺杂显示了可以有效解决问题的综合掺杂波导放大器(EDWAS)的巨大希望[4,5]。根据1990年代开始对EDWA进行的研究[6]。如今,Edwas引起了重大的兴趣,受益于不同集成光子平台的传播损失,包括氮化硅(SI 3 N 4)[1、7-9] [1、7-9],氧化泰当不是(TEO 2)[10]和Niobate(Niobate(ln)[4、11-18)[4、11-18] [4、11-18] [4、11-18]>尤其是,由于其透明度较大,非线性和出色的电极(EO)特性,LN长期以来一直是光子学的有希望的材料。绝缘子(LNOI)平台上的Niobate锂结合了LN的优势与增强的模式限制,使其成为下一代光子集成电路
Gireesh Soni (D16EC007):论文题目:“大雨天气条件下光无线链路的实验研究”,2021 年。 Dipika Pradhan (D14EC004):论文题目:“掺铒光纤放大器的实验分析以及用于 DWDM 系统的 EDFA、拉曼、TDFA 和混合放大器的设计优化,2021 年”。 Varun Shrivastava (DS16EC004) 论文题目:“湍流大气条件下具有波长分集的 FSO 系统的性能分析”,2022 年。 Abhishek Tripathi (D17EC002) 论文题目:“大雨天气条件下光学无线链路的实验研究”,2023 年。 Dhiraj Patel (D17EC005):论文题目:“用于高数据速率传输的支持前向纠错的自由空间光链路研究”,2023 年。 正在进行的博士指导:四 (04) - 指导的 M.Tech 论文数量:二十四 (27) - 指导的 B.Tech 项目数量:二十七 (29)
长光纤放大器采用超过 100 米的有效光纤长度,其产生是因为需要在宽波长范围内放大光信号,而这超出了传统光纤放大器的能力。这一领域的主要驱动力来自电信行业,该行业推动网络容量增长的动力指向了标准光传输光纤在以前未利用的波长范围内的相对较低的衰减。我们发现,L 波段 (1570 – 1611 nm) 1 中的波长可以以与 C 波段波长 (1530 – 1569 nm) 类似的方式用掺铒光纤放大器 (EDFA) 进行放大。L 波段放大器设计中最明显的区别是,与传统 C 波段放大器相比,需要较长的掺铒光纤 (EDF) 才能获得相当的增益。因此,在长放大器内,我们可能会发现发生有害光学非线性效应的理想环境。
通过电子邮件、社交网络、在线会议空间等,世界比以往任何时候都更加紧密地联系在一起,云服务也被用于存储大量数据。由于低成本光通信系统的出现,大量信息可以快速远距离发送,因此基于互联网的信息技术资源的多样化和容量增加成为可能。20 世纪 80 年代,中泽正孝教授和萩本和夫先生将掺铒光纤放大器 (EDFA) 与 InGaAsP 激光二极管相结合,构建了小型、高效、长距离光放大器,这项技术被认为是构建长距离光通信系统不可或缺的技术,但此前一直难以投入实际使用。仅在五年内,配备这些光放大器的中继器就被安装在跨太平洋和跨大西洋海底电缆和其他通信系统中,形成了遍布全球的长距离传输网络。以此技术为基础的光通信系统自那时起不断发展,应用范围也不断扩大。他们开发的光放大器为长距离、大容量光数据传输奠定了基础,而长距离、大容量光数据传输是当今全球互联网社会的核心技术之一。
摘要 随着先进相干技术的部署,光网络中的动态性、复杂性和异构性急剧增加,光交叉连接技术和多样化的网络基础设施对网络运营商的光网络管理和维护提出了巨大挑战。在本文中,我们提出了一种人工智能驱动的自主光网络的“3S”架构,该架构可以帮助光网络“自我感知”网络状态、“自适应”网络控制和“自我管理”网络操作。为了支持这些功能,已经研究了许多人工智能 (AI) 驱动的技术来提高从设备方面到网络方面的灵活性和可靠性。自适应掺铒光纤放大器 (EDFA) 控制是设备方面的一个例子,它根据网络状况提供功率自适应能力。从链路方面,开发了自适应光纤非线性补偿、光监控性能和传输质量估计,以自动监控和缓解与链路相关的信号损伤。从网络方面来看,流量预测和网络状态分析方法提供了自我意识,而人工智能驱动的自动资源分配和网络故障管理则增强了自适应性和自我管理能力。得益于充足的网络管理数据、强大的数据挖掘能力和成熟的计算单元,这些人工智能技术具有巨大的潜力为光网络提供自主功能,包括网络资源调度和网络定制。