Abbreviation Definition AE adverse event AESI adverse events of special interest BLA Biologics License Application BMI body mass index CDC US Centers for Disease Control CMC Chemistry, Manufacturing, and Control CoV Coronavirus 2019-nCoV 2019 novel Coronavirus COVID-19 Coronavirus Disease 2019 DART developmental and reproductive toxicity ELISpot enzyme-linked immunospot EUA Emergency Use Authorization FDA (US) Food and Drug Administration FIH first-in-human GMC geometric mean concentration GMFR geometric mean fold-rise GMT geometric mean titer HBV hepatitis B virus HCV hepatitis C virus HIV human immunodeficiency virus IFN γ interferon gamma IgG immunoglobulin G IL-2 interleukin 2 IL-4 interleukin 4 IM intramuscular(ly) IRR illness rate ratio LLN lower limit of normal LNP lipid nanoparticle MedDRA Medical Dictional for Regulatory Activities MERS Middle East respiratory syndrome modRNA nucleoside-modified RNA NAAT nucleic acid amplification test NHP nonhuman primate P2 S P2 mutant PBMC peripheral blood mononuclear cell PCR polymerase chain reaction PK药代动力学PT首选术语RBD受体结合结构域RNA RNA核糖酸RNA-LNP RNA RNA脂质纳米颗粒SAE SAE严重不良事件SARS严重急性呼吸综合症SARS-COV-2 SARS-COV-2 SARS COTORONAVIRUS-CORONAVIRUS-2;引起covid-19的病毒S尖峰糖蛋白SMQ标准化MEDDRA查询SOC系统器官类Th1 T辅助细胞类型1 TH2 T辅助细胞类型2美国美国USP美国Pharmacopeia
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
ace-2血管紧张素转化酶2 ADE抗体依赖性增强ADHU人腺病毒ADME吸收,分布,代谢,排泄AEX阴离子交换色谱体ARDS ARDS急性呼吸遇险障碍综合征作为活性药物分析型囊泡分析型牛belience-Alecine belecec salec-abelec coarine-azd122 coaa coaa coaa coaacoand19999999999999。 Bronchoalveolar Lavage BMI Body mass index BVH Bulk viral harvest BWP Biological Working Party ChAd63 Chimpanzee Adenovirus 63 ChAdOx1 Chimpanzee Adenovirus Ox1 ChAdOx1 MERS Chimpanzee Adenovirus Ox1 with MERS Spike antigen ChAdOx1 nCoV-19 Name of AZD1222 when initially developed by the University of Oxford Chadox2黑猩猩腺病毒OX2 CHMP药物用途的CHMP委员会CMV巨细胞病毒CNS中枢神经系统CNS COVID-19 COVID-19 Coronavirus疾病-2019 CPP关键过程参数CQAS PRIGSSER参数CQAS关键质量CT EDTA Edetate disodium ELISA Enzyme-Linked Immunosorbent Assay ELISPOT Enzyme-Linked Immunospot EMA European Medicines Agency ERA Environmental Risk Assessment ERD enhanced respiratory disease EU European Union FFF Field flow fractionation FIH First in Human FP Finished product g Guide GalK Galactokinase GFP Green Fluorescent Protein GI Gastrointestinal GLP Good Laboratory Practice GM Geometric Mean GMP Good Manufacturing Practice HAdV Human Adenovirus HAdV5 Human adenovirus serotype 5 HBV Hepatitis B virus HCP Host cell protein HEK Human Embryonic Kidney Cells HIV Human Immunodeficiency Virus HRP Horseradish peroxidase ICH International Council for Harmonisation ICU Intensive care Unit IFN γ Interferon gamma IgG Immunoglobulin G
摘要主要剂量系列后的免疫反应的轨迹决定了疫苗随时间的效力下降。在这里,我们报告了在没有感染的Chadox1 NCOV-19/AZD1222的两剂时间表之后的一年中维持免疫反应,并探索感染后抗体的衰减。总尖峰特异性IgG抗体滴度较低,两种低剂量的Chadox1 NCOV-19疫苗(两种低剂量)(P = 0.0006)(p = 0.0006)比2个标准剂量(认可的剂量)或低剂量或低剂量,然后是标准剂量疫苗。第一剂和第二剂之间的较长间隔导致较高的抗体滴度(p <0.0001);然而,没有证据表明抗体衰减的轨迹因间隔或疫苗剂量而异,而在第三剂Chadox1 NCOV-19之后,IgG抗体滴度的衰减遵循了类似的轨迹。感染后样品的趋势相似,最初的响应迅速衰减,但此后可测量的响应的持久性良好。抗体数据的外推(在两次Chadox1 NCOV-19之后)表明,抗体衰减的速率缓慢,表明抗体滴度至少维持了至少2年。这些数据表明,两剂Chadox1 NCOV-19,这可能会对严重的疾病和住院产生积极影响。关键词:疫苗,抗体,抗病毒免疫,疫苗接种缩写:AIC:Akaike的信息标准; ELISA:酶联免疫吸附测定; ELISPOT:酶联免疫疗法;欧盟:ELISA单位; IgG:免疫球蛋白G; LDLD:两种低剂量; LDSD:低剂量,然后进行标准剂量; mRNA:信使核糖核酸; ND50:稀释以实现50%的病毒中和; SARS COV-2:严重的急性呼吸综合征冠状病毒2; SDSD:2个标准剂量; SEAP:分泌的胚胎碱性磷酸酶; UKHSA:英国健康安全局; VE:疫苗功效; VOC:关注的变体
摘要胰腺癌的肿瘤微环境(TME)是高度免疫抑制的。我们最近开发了一种转化的生长因子(TGF)β的免疫调节疫苗,该疫苗通过靶向TME中的免疫抑制和脱发,在胰腺癌的鼠模型中控制肿瘤的生长。我们发现,用TGFβ疫苗的治疗不仅降低了肿瘤中M2样肿瘤相关的巨噬细胞(TAM)和与癌症相关的成纤维细胞(CAF)的百分比,而且还降低了偏振CAF的偏光CAF,而且远离肌纤维纤维细胞样的表型。然而,TGFβ疫苗在TAM和CAF表型上的免疫调节特性是否是TGFβ特异性T细胞对这些亚群的识别和随后靶向的直接结果,还是TME内诱导的整体调节的间接结果。通过ELISPOT和流式细胞仪评估TGFβ特异性T细胞对M2巨噬细胞和成纤维细胞的识别。通过用肿瘤条件的培养基培养M2巨噬细胞或成纤维细胞,评估了TGFβ疫苗对这些细胞子集的间接和直接影响,或分别用从用TGFβ疫苗或对照疫苗的小鼠脾脏中分离出的T细胞。通过流式细胞仪和生物质量多重系统(Luminex)评估表型的变化。我们发现由TGFβ疫苗诱导的TGFβ特异性T细胞可以识别M2巨噬细胞和成纤维细胞。TAMS倾向于具有促进肿瘤功能,具有免疫抑制表型,并且与胰腺癌具有M2样表型时的总体生存率降低有关。此外,我们证明了M2巨噬细胞和CAF的表型可以由TGFβ特异性T细胞直接调节TGFβ疫苗诱导的TGFβ特异性T细胞,以及由于TME内疫苗的免疫 - 调节作用而间接调节。此外,肌成纤维细胞类似CAF会产生僵硬的细胞外基质,从而限制T细胞浸润,阻碍免疫疗法在去肿瘤肿瘤中的有效性,例如胰腺导管腺癌。通过用TGFβ的TAM和CAF靶向基于TGFβ的免疫调节疫苗,可以减少胰腺肿瘤中的免疫抑制和免疫排除。
抽象背景新抗原可以通过个性化的肿瘤疫苗作为T细胞介导的抗肿瘤免疫的靶标。我们的临床研究NCT03715985的临时数据表明,在脂质体辅助caf09b中配制的基于个性化肽的新抗原疫苗EVX-01是安全的,并且能够在转移性贝雷诺马瘤患者中引起EVX-01特异性T细胞反应。在这里,我们介绍了研究的剂量提升部分的结果,评估了EVX-01除抗PD-1治疗外的可行性,安全性,有效性和免疫原性。转移性黑色素瘤的方法对抗PD-1治疗的患者在三个同类中接受疫苗剂量增加(双重和四倍)。AI平台先驱选择了肿瘤衍生的新抗原,并用于个性化治疗性癌症肽疫苗EVX-01。疫苗,总共三个腹膜内注射和三次肌肉注射。该研究的主要终点是安全性和耐受性。其他终点是免疫反应,生存和客观响应率。结果,在EVX-01的剂量升级期间未观察到与疫苗相关的严重不良事件,并结合了根据局部准则给出的抗PD-1药剂。两名患者处于第三剂量水平(四倍剂量)的3级毒性,很可能与pembrolizumab有关。 EVX-01诱导所有治疗患者的肽特异性CD4+和/或CD8+T细胞反应,CD4+T细胞为主要反应。两名患者处于第三剂量水平(四倍剂量)的3级毒性,很可能与pembrolizumab有关。EVX-01诱导所有治疗患者的肽特异性CD4+和/或CD8+T细胞反应,CD4+T细胞为主要反应。总体而言,12例患者中有8例具有客观的临床反应(6个部分反应(PR)和2个CR),所有4例患者均为最高剂量水平(1 CR,3个PR)。由IFN-γELISPOT测定法测得的免疫反应的大小与单个肽剂量相关。检测到先锋质量评分与诱导的T细胞免疫原性之间的显着相关性,而更好的CRS与免疫原性EVX-01肽的数量和先锋质量评分相关。
抽象的背景肿瘤腺病毒(OADS)是实体瘤的临床测试最多的病毒载体。然而,大多数临床测试的“武装” OADS在各种实体瘤患者中的抗肿瘤作用有限,即使剂量增加和多次注射。我们开发了一种二元溶瘤/辅助辅助腺病毒系统(CADVEC),其中肿瘤与OAD和非重复辅助辅助辅助辅助AD(HDAD)共同感染。我们最近证明,表达白介素12的单一低剂量CADVEC,编程的死亡配体1个阻滞剂和HSV胸苷激酶安全开关(CADTRIO)会诱导患者的显着抗肿瘤作用,包括完全反应。与以前的OAD研究类似,所有患者在治疗后主要放大AD特异性T细胞,但是,CadVec即使以低剂量下的100倍,CADVEC仍然能够诱导临床反应。解决了患者中介导的抗肿瘤效应机制的方法,我们使用酶联的免疫吸附物点(ELISPOT)分析了患者样品,以测量T-Cell特异性和定量聚合酶链链反应(QPCR),以测量CADVEC病毒基因组拷贝在Tumor的位置。然后,我们使用活细胞成像评估了体外CADVEC功效的潜在机制。基于这些结果,我们开发了一种新的CADVEC,另外表达了针对CD44V6的T细胞参与者分子,以重定向与癌症干细胞群体(CADTETRA)相关的肿瘤无关的T细胞,以进一步改善局部CADVEC治疗。我们在体外和体内测试了其对不同癌症类型的功效,包括AD预免疫的人源化小鼠。结果我们发现,HDAD感染的细胞通过免疫调节转基因逃脱了具有增强肿瘤特异性T细胞活性的AD特异性T细胞识别。由于CADVEC治疗最初在患者中扩增了AD特异性T细胞,因此我们通过表达CD44V6。从CADTETRA咬合,将这些病毒特异性T细胞重新指导为靶向肿瘤细胞。cadtetra显着控制了肿瘤的生长,在免疫学上“热”和“冷”肿瘤中针对癌细胞的局部和全身反应
摘要 背景 过继细胞疗法,例如嵌合抗原受体 (CAR)-T 细胞疗法,已改善血液系统恶性肿瘤患者的治疗效果。目前,FDA 批准的六种 CAR-T 细胞产品中有四种使用基于 FMC63 的 α CD19 单链可变片段(源自鼠单克隆抗体)作为细胞外结合结构域。临床研究表明,患者对自体 CAR-T 细胞的非自身 CAR 成分或同种异体 CAR-T 细胞的供体特异性抗原产生体液和细胞免疫反应,这被认为可能会限制 CAR-T 细胞的持久性和重复给药的成功率。 方法 在本研究中,我们实施了一种一次性方法,通过表达与抗原加工相关的转运蛋白的病毒抑制剂 (TAPi) 结合编码针对 II 类 MHC 转录激活因子 (CIITA) 的 shRNA 转基因,同时减少抗原呈递和两类主要组织相容性复合体 (MHC) 的表面表达,从而防止对工程 T 细胞的排斥。通过流式细胞分析和混合淋巴细胞反应试验在体外筛选出最佳组合,并在白血病和淋巴瘤小鼠模型中在体内进行验证。使用患者样本在自体环境中评估功能,并使用同种异体小鼠模型在同种异体环境中评估功能。结果 Epstein-Barr 病毒 TAPi 和靶向 CIITA 的 shRNA 的组合可有效降低 α CD19“隐形”CAR-T 细胞中的细胞表面 MHC I 类和 II 类,同时保留体外和体内抗肿瘤功能。使用先前接受自体 α CD19 CAR-T 细胞治疗的患者的 T 细胞进行的混合淋巴细胞反应试验和 IFN γ ELISpot 试验证实,表达隐形转基因的 CAR T 细胞可逃避同种异体和自体抗 CAR 反应,这在体内得到了进一步验证。重要的是,我们注意到接受过多次 CAR-T 细胞输注的患者中存在抗 CAR-T 细胞反应,而这种反应在体外用含有隐形转基因的自体 CAR 进行再刺激时会降低。结论总之,这些数据表明,所提出的隐形转基因可能会降低自体和同种异体细胞疗法的免疫原性。此外,患者数据表明,重复剂量的基于 FMC63 的自体 α CD19 CAR-T 细胞可显著增加这些患者的抗 CAR T 细胞反应。