欧洲是全球沼气生产的领导者,沼气是一种由碳中性来源产生的可再生能源。然而,可持续发展政策要求这些类型的燃料在生物和地理来源方面具有“可追溯性”。此外,为了能够使用天然气使用的现有运输和储存基础设施,并让购买者放心其质量和热值,需要对这些气体进行精确表征。生物燃料的成分通常比传统燃料更加多样化和异质,进行这些测量具有挑战性。EMRP 研究开发了新技术、测量仪器和认证参考材料,用于分析这些复杂的混合物。该研究能够精确表征可能损坏运输基础设施的污染物,例如水、氨和颗粒物。该研究还证明了使用目前用于天然气的现有“能量密度方程”的适用性——这对于计算运输和储存过程中的气体密度非常重要。
量子态的检测可能涉及该状态的破坏。量子物理定律是目前限制新一代光学原子钟稳定性的一个因素,这可能会重新定义秒,即时间的 SI 单位。解决其稳定性问题的一个潜在解决方案是使用量子纠缠。纠缠允许两个原子或离子表现出彼此相同的属性,而无需物理连接。这意味着可以观察其中一个原子或离子的状态,而不会破坏另一个原子或离子的状态。该项目将使用基于量子纠缠的技术来提高光学原子钟的短期稳定性,超越目前的限制。研究结果将提高基于可扩展纠缠的精密光谱学,并对加速度计、重力仪、陀螺仪和磁力仪等更广泛的量子传感器产生直接影响。
欧洲是全球沼气生产的领导者,沼气是一种由碳中性来源产生的可再生能源。然而,可持续发展政策要求这些类型的燃料在生物和地理来源方面具有“可追溯性”。此外,为了能够使用天然气使用的现有运输和储存基础设施,并让购买者放心其质量和热值,需要对这些气体进行精确表征。生物燃料的成分通常比传统燃料更加多样化和异质,进行这些测量具有挑战性。EMRP 研究开发了新技术、测量仪器和认证参考材料,用于分析这些复杂的混合物。该研究能够精确表征可能损坏运输基础设施的污染物,例如水、氨和颗粒物。该研究还证明了使用目前用于天然气的现有“能量密度方程”的适用性——这对于计算运输和储存过程中的气体密度非常重要。
对于大多数制造业的供应链而言,关键在于测量和校准是否可追溯且可靠,这反过来又会影响其生产力、效率和完整性,也就是说,无法追溯到通用标准的测量是不可靠的,供应商无法保证其产品符合制造商的规格。未来工厂环境中的许多测量系统仅提供预处理数据的数字输出,校准信息通常很少。然而,需要可靠的信息来评估数据质量。这可以通过开发分布式传感器网络的校准框架来解决,该框架能够将来自单独校准的传感器的测量不确定度推断到动态测量环境中相同类型的其他单个传感器。因此,有必要开发用于校准工业传感器网络和数据聚合的方法,以及建立通用标准和指南并商定参考计量基础设施。
对于大多数制造业的供应链而言,关键在于测量和校准是否可追溯且可靠,这反过来又会影响其生产力、效率和完整性,也就是说,无法追溯到通用标准的测量是不可靠的,供应商无法保证其产品符合制造商的规格。未来工厂环境中的许多测量系统仅提供预处理数据的数字输出,校准信息通常很少。然而,需要可靠的信息来评估数据质量。这可以通过开发分布式传感器网络的校准框架来解决,该框架能够将来自单独校准的传感器的测量不确定度推断到动态测量环境中相同类型的其他单个传感器。因此,有必要开发用于校准工业传感器网络和数据聚合的方法,以及建立通用标准和指南并商定参考计量基础设施。
参与该项目的实验室列于表 1 中。如表 2 所示,许多实验室在较大的温控室中使用不同类型的子室来改善温度控制、实现和/或改善湿度控制并尽量减少辐射热传递的影响,因为室壁的温度略有不同。这些子室由不锈钢、铝、铜或木材制成,其容积从几分升到 1 升不等。GUM 和 MIRS/UL-FE/LMK 的子室配有风扇,以保持子室和其温控环境之间的空气循环。由于流动方向向外,风扇散发的热量不会引起子室内的温度梯度。值得注意的是,大多数子室内的风速明显小于没有子室的较大温控室。
前言 在日常生活中,我们都依赖于可靠的测量,这是贸易、监管、可持续制造和社会福祉的基础,例如清洁的环境、安全的能源供应和公民健康的改善。随着科学技术的快速发展,对新测量技术和前所未有的准确性和可靠性测量的需求不断增长。为了满足这些要求,显然需要进行计量研发。提供国际认可的测量基础设施的责任主要落在国家计量机构身上,多年来,这些机构与其他公共和私人研究机构合作建立了最好的测量研发生态系统之一。计量研发的国际合作至关重要,主要有两个原因:所需资源太大,单个国家计量机构无法提供;由于全球化的日益发展,结果必须得到国际认可。欧洲国家计量机构协会 (EURAMET) 近年来率先通过由各国政府和欧盟共同资助的价值超过 10 亿欧元的欧洲主要计量研究计划,在计量研究方面开展合作。该计划向 NMI、其他指定国家机构和非 NMI 开放,为学术、工业和其他研究机构的参与提供了重要机会。欧洲计量战略研究议程
量子光力学的基础研究(退相干和量子引力测试、波函数坍缩以及量子和经典状态之间的转变)除了可以一窥由数十亿个原子组成的介观系统的量子行为外,还是将机械装置用作量子计量工具的第一步。微米和纳米级的机械谐振器已经用于测量具有极高灵敏度的质量和力。单个原子和分子被称重,生物分子之间的力以及与磁共振单自旋相关的力已经得到解决。虽然利用原子、光子和电子形式的量子探针推动了量子计量的许多领域的进步,但探针运动自由度中的热噪声仍然限制了可达到的精度。光学相互作用结合了冷却和捕获,提供了一种无需使用低温技术即可将机械系统带入基态的工具。量子光力学不仅可以提高现有机械传感器的性能(亚阿托牛顿级的力和飞米级的位移),而且还将实现新的测量技术(例如光子数的量子非破坏性测量)。
大约 50 年前,超导量子器件彻底改变了精确测量和电气计量,当时基于约瑟夫森效应的 SQUID 和量子电压标准被发明。最近在超导纳米线中发现的相干量子相移 (CQPS) 为量子信息处理和计量学中的约瑟夫森效应提供了一种替代方案。完全由超导材料制成的 CQPS 器件具有多种优势,例如制造步骤比约瑟夫森效应器件少、对较大电流的稳定性强、参数范围宽,并且似乎没有约瑟夫森器件绝缘隧道势垒中存在的不良两级涨落器。预计单个 CQPS 器件可以产生比单电子泵高得多且可能更精确的量化电流,而单电子泵是目前最先进的量子电流标准。
建筑行业是欧洲最大的能源消耗行业,吸收了欧洲总能源的约 40%。然而,目前约 75% 的建筑能源效率低下,有关实际条件下能源性能运营评级评估程序的信息有限。目前,建筑能效 (EPB) 仅测量一般参数,即家庭的整体能耗,而不是单个房间或应用。此外,没有测量环境参数,例如室温、湿度、照明和气流,并且不存在智能计量技术的共同欧洲标准。因此,需要可追溯的测量方法来测量与 EPB 相关的不同参数的实际评级,以及输入建筑能效指令 (EPBD) 2010/31/EU。