图3。表征共同封装的FP VLP。a)封装的MTAGBFP2和EYFP的叠加光谱数据。b)在MTAGBFP2发射(460 nm)下归一化的融合,对照混合物和共封闭的VLP的荧光光谱(λEX= 400 nm)。c)从MTAGBPF2发射和直接激发EYFP的流血 - 400 nm。箭头表示EYFP的发射最大值。d)融合,控制混合物和共同封装的VLP的CFRET值。生物重复分别显示。错误条表示n = 3个技术重复的标准偏差。
虽然基于Piggybac转座子的转基因被广泛用于各种新兴模型生物,但其在黄油环和飞蛾中相对较低的换位速率却阻碍了其用于鳞翅目常规遗传转化的使用。在这里,我们测试了密码子优化的多活跃pigbac转座酶(hypbase)mRNA形式的适用性,以将转基因盒递送和整合到储藏室的基因组中。与供体质粒共同注射,成功整合了1.5 - 4.4 kb的表达盒,驱动荧光标记物EGFP EGFP,DSRED或EYFP与3XP3启动子中的眼睛和Glia中的EYFP。从72小时的胚胎和幼虫,pupae和携带隐性白眼突变的成年人中,可以从72小时的胚胎中检测到转基因在G 0中的体细胞整合和表达。总体而言,注射卵中有2.5%存活到具有镶嵌荧光的成年成年人中。随后的荧光G 0创建者脱离了3xp3 :: eGFP和3xp3 :: eyfp的单插入副本,并产生了稳定的同源线。表达3xp3 :: DSRED的G 0创始人的一小部分G 0的随机跨跨跨跨,产生了一个稳定的转基因线,以一个以上的转基因插入位点分离。我们讨论了如何使用hypbase在Plodia和其他飞蛾中产生稳定的转基因资源。
由于产品滴度相对较高且生产成本较低,杆状病毒/昆虫细胞表达系统被认为是生物制药行业的多功能生产平台。它在生产复杂的多聚蛋白质组装体(包括病毒样颗粒 (VLP))方面表现出色,而病毒样颗粒 (VLP) 被认为是对抗新出现病毒威胁的有希望的疫苗候选物,这使得该系统更具吸引力。然而,在 VLP 生产过程中芽生杆状病毒的共同形成对下游加工构成了严峻挑战。为了减少表达上清液中芽生杆状病毒的数量,我们开发了一种基于 CRISPR/Cas9 的可诱导敲除系统,并与两个杆状病毒载体共感染:一个携带 Cas9 核酸酶,另一个整合了 sgRNA 表达序列。使用我们的设置可以单独生成高滴度病毒,因为只有当两种病毒同时感染细胞时才会发生敲除。当芽生必需基因 gp64 和 vp80 被敲除时,我们测量到杆状病毒滴度降低了 90% 以上。然而,结果,我们还测定了较低的整体 eYFP 荧光强度,表明重组蛋白产量减少,这表明需要进一步改进工程和纯化,以最终最大限度地降低利用杆状病毒/昆虫细胞表达系统生产疫苗的成本和时间。