DNA是从“自下而上”构建几乎任意几何形状的超分子结构的非凡材料,在纳米结构的合理设计中提供了提高的精度。结构DNA纳米技术在近年来取得了巨大的发展,并促进了使用DNA链的自组装的自我组装来形成的两种和三个尺寸的复杂纳米结构,其相互作用的相互作用是通过其基本序列设计来编程的。在这些技术中,DNA折纸技术在自下而上的纳米结构的自下而上制造方面特别有用,范围从数十到数百个纳米。[1]通常,通过与数百种合成的“主食”寡核苷酸杂交将7-KBase DNA支架链折叠成结构,从而允许形成各种结构。[2]
和米利肯。2004 年,我成为一名企业家,开发和利用防弹纤维用于国防应用。当时市场对新材料的需求强劲,然而,随着技术的发展和规模冲突的解决以及全球金融危机的袭来。虽然技术转向复合材料,但需求并不像我们预想的那样匹配。结果,新的管理层接手了,我转而进入电池行业。2011 年,我创办了一家名为 Dreamweaver 的公司。Dreamweaver 生产用于锂离子电池的高温热阻隔膜。我们承包生产该技术并进行营销。挑战在于,电池行业不会接受单一来源生产来广泛采用新技术。2017 年,我们创办了 Soteria,它基于联盟和许可模式,我们在其中推广、开发和营销电池安全技术。
作者 D Motabar · 2021 · 被引用 25 次 — 生物学和电子学都擅长接收、分析和响应信息,但它们使用的方式却完全不同。
Abstract ........................................................................................................................................................ ix
在RMI的应用创新路线图中所探讨的4,需要多种CDR方法组合,因为没有单独的方法可以满足对二氧化碳去除碳的广泛需求,并且在不同的地理和工业中,不同的方法将是有利的。RMI当前在三个类别中跟踪29种不同的CDR方法,ii每个都提供独特的优势和挑战。5,III大约一半的这些方法已经使用了电化学,或者可以通过电化学突破而改变。采用各种CDR策略组合有助于降低与每种方法相关的风险,从而灵活地自定义CDR方法以适合特定的地理和环境条件,并解锁各种各样的共同利益。
由于其电导率的微调,这些聚合物已成为设计微电子局部电活性模式的一种替代方案。 [12,13] 在这种情况下,通常使用不同的制造技术,例如注射打印、光热图案化、3D 打印和压印,以及电子束或紫外光刻,[14–21] 例如,在聚吡咯和聚(3,4-乙烯二氧噻吩)/聚苯乙烯磺酸盐基底上产生明确的导电图案。 [16,20] 然而,人们非常需要用于导电基底局部图案化的低成本和直接的方法。 在这种情况下,双极电化学 (BE) 被认为是一种有趣的替代方法,用于局部改性导电物体。 [22–27] 该概念基于由于外部电场 (ε) 的存在而导致的导电基底的不对称极化。在这种条件下,在暴露于电解质溶液中的ε 的物体双极电极 (BPE) 的每个末端都会产生极化电位差 (ΔV)。在存在电活性物质的情况下,仅当ΔV 超过热力学阈值电位 (ΔVmin) 时,BPE 的两端才会发生氧化还原反应。这一概念已用于不对称生成图案化梯度,范围从材料的化学组成到润湿性。[28–33] 近年来,该方法还被用于通过双极电解胶束破坏或电接枝来产生有机薄膜梯度。[34–36] 一种有前途的替代方法是利用导电聚合物有效的绝缘体/导体转变来产生不对称的充电/放电梯度。[37] 例如,Inagi 等人。已经利用这一概念,使用 U 型双极电化学电池在不同的 π 共轭聚合物(如聚苯胺、聚-3,4-二氧噻吩、聚-3-甲基噻吩和共聚(9-芴醇)-(9,9-二辛基芴))中诱导导电模式。[38–41] 此外,已经证明,通过使用复杂的双极电化学装置,可以产生陡峭的局部掺杂梯度。[42] 在此,我们利用双极电化学方法,在掺杂有十二烷基苯磺酸根阴离子(DBS)的柔性独立聚吡咯条(Ppy)上产生局部电阻梯度。之前已有报道通过双极电化学对导电聚合物进行不对称改性,但主要集中在光学跃迁(颜色变化)上。由于对于导电聚合物,电导率
导电聚合物因其可用于设计微电子局部电活性图案而备受关注。在这项工作中,我们利用聚吡咯的特性,结合双极电化学引发的无线极化,产生局部电阻梯度图案。物理化学改性是由聚吡咯的还原和过氧化引起的,这会在预定位置的导电基板的不同位置产生高电阻区域。由于聚吡咯具有出色的柔韧性,可以形成 U 形、S 形和 E 形双极电极用于概念验证实验,并进行电化学改性以产生明确的电阻梯度。样品的 EDX 分析证实了局部物理化学改性。与更传统的图案化方法相比,这种方法的主要优势是双极电化学的无线特性以及可能对电化学改性的空间分布进行微调。
图 1 原位原子力显微镜 (AFM) 在锂电池中的应用概述。阳极 - 电解质界面表征图像。经许可复制。26 版权所有 2020,美国化学学会。阴极 - 电解质界面表征图像。经许可复制。27 版权所有 2022,Wiley-VCH GmbH。AFM 压痕图像。经许可复制。28 版权所有 2020,Elsevier Inc. 硅电极图像。经许可复制。29 版权所有 2014,Elsevier BV Li-S 电池表征图像。经许可复制。30 版权所有 2017,Wiley-VCH GmbH。Li-O2 电池表征图像。经许可复制。31 版权所有 2013,美国化学学会。NMC 变形表征图像。经许可复制。 32 版权所有 2020,Elsevier Ltd. 阴离子插层表征图像。经许可复制。33 版权所有 2020,清华大学出版社和 Springer - Verlag GmbH Germany,Springer Nature 的一部分。CE,对电极;DMT,Derjaguin – Muller – Toporov;HOPG,高取向热解石墨;PES,1% 丙烯-1-烯-1,3-磺内酯;RE,参比电极;WE,工作电极。
Seyyed Mohsen Beladi-Mousavi、Gerardo Salinas、Nikolas Antonatos、Vlastimil Mazanek、Patrick Garrigue 等人。通过独立 2D 反应层中的双极电化学微调还原氧化石墨烯的功能。Carbon,2022 年,191,第 439-447 页。�10.1016/j.carbon.2022.02.010�。�hal-03635847�
总结,在医学中使用细胞静电刺激一直是人们越来越感兴趣的领域,石墨烯已成为该领域的有希望的材料。 div>本文探讨了细胞静电刺激如何影响关键的生物学过程以及石墨烯具有独特的特性可以增强该技术。 div>研究了石墨烯 - 细胞相互作用的电化学方面及其对细胞活性调节的影响。 div>此外,从组织工程到疾病治疗中检查了各种石墨烯应用。 div>本文提供了不可或缺的愿景,即电化学和石墨烯的结合如何改变再生医学领域。 div>
